ECAP工艺对CuCoNi合金变形性能、组织和导电性的影响

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Journal of Mining and Metallurgy Section B-Metallurgy Pub Date : 2023-01-01 DOI:10.2298/jmmb220309004g
B. Grzegorczyk, S. Rusz, P. Snopiński, O. Hilšer, A. Skowronek, A. Grajcar
{"title":"ECAP工艺对CuCoNi合金变形性能、组织和导电性的影响","authors":"B. Grzegorczyk, S. Rusz, P. Snopiński, O. Hilšer, A. Skowronek, A. Grajcar","doi":"10.2298/jmmb220309004g","DOIUrl":null,"url":null,"abstract":"The study concerns the influence of various variants of severe plastic deformation in the Equal Channel Angular Pressing (ECAP) process on the microstructure, microhardness and conductivity of the CuCoNi alloy. The evolution of the microstructure was investigated by microscopic observations and electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM). Using the Vickers method, tests of microhardness of samples were performed after various variants of the ECAP process. The conductivity was measured with an eddy current device for measuring electrical conductivity based on the complex impedance of the measuring probe. The results indicated the possibility of deformation of CuCoNi alloys in the process of pressing through the ECAP angular channel and developing their microstructure and properties. The method is an effective tool for strengthening the tested copper alloy by refinement of the microstructure. After the first pass, the grain size was reduced by 80%. Increasing the plastic deformation temperature did not significantly affect the obtained level of microstructure fragmentation - the average grain size is approx. 1.4-1.5 ?m. The fragmentation of the microstructure had a negligible effect on the conductivity of the CuCoNi alloy, which after the ECAP process oscillated at the value of 13 MS/m.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"3 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ECAP process on deformability, microstructure and conductivity of CuCoNi alloy\",\"authors\":\"B. Grzegorczyk, S. Rusz, P. Snopiński, O. Hilšer, A. Skowronek, A. Grajcar\",\"doi\":\"10.2298/jmmb220309004g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study concerns the influence of various variants of severe plastic deformation in the Equal Channel Angular Pressing (ECAP) process on the microstructure, microhardness and conductivity of the CuCoNi alloy. The evolution of the microstructure was investigated by microscopic observations and electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM). Using the Vickers method, tests of microhardness of samples were performed after various variants of the ECAP process. The conductivity was measured with an eddy current device for measuring electrical conductivity based on the complex impedance of the measuring probe. The results indicated the possibility of deformation of CuCoNi alloys in the process of pressing through the ECAP angular channel and developing their microstructure and properties. The method is an effective tool for strengthening the tested copper alloy by refinement of the microstructure. After the first pass, the grain size was reduced by 80%. Increasing the plastic deformation temperature did not significantly affect the obtained level of microstructure fragmentation - the average grain size is approx. 1.4-1.5 ?m. The fragmentation of the microstructure had a negligible effect on the conductivity of the CuCoNi alloy, which after the ECAP process oscillated at the value of 13 MS/m.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb220309004g\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb220309004g","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

研究了等径角挤压(ECAP)过程中各种剧烈塑性变形对CuCoNi合金显微组织、显微硬度和电导率的影响。利用扫描电子显微镜(SEM)观察和电子背散射衍射(EBSD)研究了其微观结构的演变。使用维氏法,在不同的ECAP工艺后进行了样品的显微硬度测试。利用涡流电导率测量装置,根据测量探头的复阻抗测量电导率。结果表明,CuCoNi合金在挤压ECAP角通道的过程中可能发生变形,并发展其组织和性能。该方法是通过细化组织来强化被试铜合金的有效工具。经过第一次加工后,晶粒尺寸减小了80%。提高塑性变形温度对获得的组织破碎程度没有显著影响-平均晶粒尺寸约为。1.4 - -1.5 ?。微观组织的断裂对CuCoNi合金电导率的影响可以忽略不计,ECAP处理后CuCoNi合金电导率在13 MS/m左右振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of ECAP process on deformability, microstructure and conductivity of CuCoNi alloy
The study concerns the influence of various variants of severe plastic deformation in the Equal Channel Angular Pressing (ECAP) process on the microstructure, microhardness and conductivity of the CuCoNi alloy. The evolution of the microstructure was investigated by microscopic observations and electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM). Using the Vickers method, tests of microhardness of samples were performed after various variants of the ECAP process. The conductivity was measured with an eddy current device for measuring electrical conductivity based on the complex impedance of the measuring probe. The results indicated the possibility of deformation of CuCoNi alloys in the process of pressing through the ECAP angular channel and developing their microstructure and properties. The method is an effective tool for strengthening the tested copper alloy by refinement of the microstructure. After the first pass, the grain size was reduced by 80%. Increasing the plastic deformation temperature did not significantly affect the obtained level of microstructure fragmentation - the average grain size is approx. 1.4-1.5 ?m. The fragmentation of the microstructure had a negligible effect on the conductivity of the CuCoNi alloy, which after the ECAP process oscillated at the value of 13 MS/m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
40.00%
发文量
19
审稿时长
2 months
期刊介绍: University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded. Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.
期刊最新文献
The melting performance of high alumina blast furnace slags Recovery of Li, Mn, and Fe from LiFePO4/LiMn2O4 mixed waste lithium-ion battery cathode materials Modeling of partial reduction of hematite with carbon-monoxide in tunnel furnace Study on the drying characteristics of green pellets of ultrafine iron ore concentrate Effect of extrusion process on the stress corrosion cracking resistance of 7N01 aluminum alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1