拟南芥synaptotagmin 1以脂质成分依赖的方式介导脂质转运

IF 3.6 3区 生物学 Q3 CELL BIOLOGY Traffic Pub Date : 2022-04-22 DOI:10.1111/tra.12844
Tiantian Qian, Chenlu Li, Furong Liu, K. Xu, Chun Wan, Yinghui Liu, Haijia Yu
{"title":"拟南芥synaptotagmin 1以脂质成分依赖的方式介导脂质转运","authors":"Tiantian Qian, Chenlu Li, Furong Liu, K. Xu, Chun Wan, Yinghui Liu, Haijia Yu","doi":"10.1111/tra.12844","DOIUrl":null,"url":null,"abstract":"The endoplasmic reticulum (ER)‐plasma membrane (PM) contact sites (EPCSs) are structurally conserved in eukaryotes. The Arabidopsis ER‐anchored synaptotagmin 1 (SYT1), enriched in EPCSs, plays a critical role in plant abiotic stress tolerance. It has become clear that SYT1 interacts with PM to mediate ER‐PM connectivity. However, whether SYT1 performs additional functions at EPCSs remains unknown. Here, we report that SYT1 efficiently transfers phospholipids between membranes. The lipid transfer activity of SYT1 is highly dependent on phosphatidylinositol 4,5‐bisphosphate [PI(4,5)P2], a signal lipid accumulated at the PM under abiotic stress. Mechanically, while SYT1 transfers lipids fundamentally through the synaptotagmin‐like mitochondrial‐lipid‐binding protein (SMP) domain, the efficient lipid transport requires the C2A domain‐mediated membrane tethering. Interestingly, we observed that Ca2+ could stimulate SYT1‐mediated lipid transport. In addition to PI(4,5)P2, the Ca2+ activation requires the phosphatidylserine, another negatively charged lipid on the opposed membrane. Together, our studies identified Arabidopsis SYT1 as a lipid transfer protein at EPCSs and demonstrated that it takes conserved as well as divergent mechanisms with other extend‐synaptotagmins. The critical role of lipid composition and Ca2+ reveals that SYT1‐mediated lipid transport is highly regulated by signals in response to abiotic stresses.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"30 1","pages":"346 - 356"},"PeriodicalIF":3.6000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Arabidopsis synaptotagmin 1 mediates lipid transport in a lipid composition‐dependent manner\",\"authors\":\"Tiantian Qian, Chenlu Li, Furong Liu, K. Xu, Chun Wan, Yinghui Liu, Haijia Yu\",\"doi\":\"10.1111/tra.12844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The endoplasmic reticulum (ER)‐plasma membrane (PM) contact sites (EPCSs) are structurally conserved in eukaryotes. The Arabidopsis ER‐anchored synaptotagmin 1 (SYT1), enriched in EPCSs, plays a critical role in plant abiotic stress tolerance. It has become clear that SYT1 interacts with PM to mediate ER‐PM connectivity. However, whether SYT1 performs additional functions at EPCSs remains unknown. Here, we report that SYT1 efficiently transfers phospholipids between membranes. The lipid transfer activity of SYT1 is highly dependent on phosphatidylinositol 4,5‐bisphosphate [PI(4,5)P2], a signal lipid accumulated at the PM under abiotic stress. Mechanically, while SYT1 transfers lipids fundamentally through the synaptotagmin‐like mitochondrial‐lipid‐binding protein (SMP) domain, the efficient lipid transport requires the C2A domain‐mediated membrane tethering. Interestingly, we observed that Ca2+ could stimulate SYT1‐mediated lipid transport. In addition to PI(4,5)P2, the Ca2+ activation requires the phosphatidylserine, another negatively charged lipid on the opposed membrane. Together, our studies identified Arabidopsis SYT1 as a lipid transfer protein at EPCSs and demonstrated that it takes conserved as well as divergent mechanisms with other extend‐synaptotagmins. The critical role of lipid composition and Ca2+ reveals that SYT1‐mediated lipid transport is highly regulated by signals in response to abiotic stresses.\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":\"30 1\",\"pages\":\"346 - 356\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12844\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12844","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

真核生物的内质网(ER) -质膜(PM)接触位点(EPCSs)在结构上是保守的。拟南芥ER锚定突触蛋白1 (SYT1)在epcs中富集,在植物非生物胁迫耐受中起关键作用。现在已经很清楚,SYT1与PM相互作用介导ER - PM连接。然而,SYT1是否在epcs中执行其他功能仍然未知。在这里,我们报道SYT1有效地在膜之间转移磷脂。SYT1的脂质转移活性高度依赖于磷脂酰肌醇4,5 -二磷酸[PI(4,5)P2],这是一种在非生物胁迫下在PM积累的信号脂质。从机械上讲,SYT1通过synaptotagmin - like线粒体脂质结合蛋白(SMP)结构域转移脂质,而有效的脂质运输需要C2A结构域介导的膜系固。有趣的是,我们观察到Ca2+可以刺激SYT1介导的脂质转运。除了PI(4,5)P2外,Ca2+的激活还需要磷脂酰丝氨酸,这是另一种在对立膜上带负电荷的脂质。总之,我们的研究确定拟南芥SYT1是EPCSs中的脂质转移蛋白,并证明它与其他延伸突触tagmins具有保守和不同的机制。脂质组成和Ca2+的关键作用表明,SYT1介导的脂质转运在响应非生物胁迫的信号中受到高度调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arabidopsis synaptotagmin 1 mediates lipid transport in a lipid composition‐dependent manner
The endoplasmic reticulum (ER)‐plasma membrane (PM) contact sites (EPCSs) are structurally conserved in eukaryotes. The Arabidopsis ER‐anchored synaptotagmin 1 (SYT1), enriched in EPCSs, plays a critical role in plant abiotic stress tolerance. It has become clear that SYT1 interacts with PM to mediate ER‐PM connectivity. However, whether SYT1 performs additional functions at EPCSs remains unknown. Here, we report that SYT1 efficiently transfers phospholipids between membranes. The lipid transfer activity of SYT1 is highly dependent on phosphatidylinositol 4,5‐bisphosphate [PI(4,5)P2], a signal lipid accumulated at the PM under abiotic stress. Mechanically, while SYT1 transfers lipids fundamentally through the synaptotagmin‐like mitochondrial‐lipid‐binding protein (SMP) domain, the efficient lipid transport requires the C2A domain‐mediated membrane tethering. Interestingly, we observed that Ca2+ could stimulate SYT1‐mediated lipid transport. In addition to PI(4,5)P2, the Ca2+ activation requires the phosphatidylserine, another negatively charged lipid on the opposed membrane. Together, our studies identified Arabidopsis SYT1 as a lipid transfer protein at EPCSs and demonstrated that it takes conserved as well as divergent mechanisms with other extend‐synaptotagmins. The critical role of lipid composition and Ca2+ reveals that SYT1‐mediated lipid transport is highly regulated by signals in response to abiotic stresses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Traffic
Traffic 生物-细胞生物学
CiteScore
8.10
自引率
2.20%
发文量
50
审稿时长
2 months
期刊介绍: Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement. All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision. Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.
期刊最新文献
Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases. Mechanistic Insights Into an Ancient Adenovirus Precursor Protein VII Show Multiple Nuclear Import Receptor Pathways. Dissociation of Drosophila Evi-Wg Complex Occurs Post Apical Internalization in the Maturing Acidic Endosomes. Post-Transcriptional Regulation of Rab7a in Lysosomal Positioning and Drug Resistance in Nutrient-Limited Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1