Zongjin Li, Changxin Song, Zeyu Jia, Dong Chen, Yan Liang
{"title":"基于WGCNA算法的高血压关键基因模块和枢纽基因鉴定","authors":"Zongjin Li, Changxin Song, Zeyu Jia, Dong Chen, Yan Liang","doi":"10.1145/3469678.3469701","DOIUrl":null,"url":null,"abstract":"Background: Hypertension is a chronic disease with high morbidity and high mortality in the world. Its pathogenesis is complicated and its molecular mechanism has not been fully elucidated, which seriously threatens human life and health. The purpose of this paper was to the molecular study of hypertension, explore candidate biomarkers affecting the occurrence of hypertension from the perspective of weighted network, and provide the theoretical and practical basis for the prevention and treatment of hypertension. Materials and methods: The hypertension gene expression dataset of GSE75360 were downloaded from the Gene Expression Omnibus (GEO). The “limma” package of R was utilized to screen the differentially expressed genes (DEGs) between the sample group with and without high blood pressure. Next, Weight Gene co-expression Network Analysis (WGCNA) algorithm was used to establish a co-expression network of the DEGs and to detect hypertension-related gene modules. And DAVID was utilized to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we proposed the hierarchical fusion method to screen hub genes. Results: We identified 2 key gene modules that were significantly associated with hypertension, named Mlightcyan and Mgreenyellow. In addition, 18 hub genes (RPS28, LOC730288/RPS28P6, LOC645968/ RPS3AP25, LOC727826/RPS11P5, RPL21, LOC653079/ RPL36P14, LOC441743/RPL23AP5, LOC651453/RPL36P14, LPPR2, NSMCE4A, FKBP1A, RAB5C, MAN2B1, FURIN, TBXAS1, RPS6KA4, PARN, LOC642489/FKBP1C) relating to hypertension were identified form the two key gene modules. Conclusions: In this study, we identified two key gene modules and 18 hub genes, which were associated with the mechanisms of hypertension. These findings will provide references that improve the understanding of the pathogenesis of hypertension. The hub genes might can serve as therapeutic targets for diagnosis of hypertension in the future.","PeriodicalId":22513,"journal":{"name":"The Fifth International Conference on Biological Information and Biomedical Engineering","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Key Gene Modules and Hub Genes of Hypertension Based on WGCNA Algorithm\",\"authors\":\"Zongjin Li, Changxin Song, Zeyu Jia, Dong Chen, Yan Liang\",\"doi\":\"10.1145/3469678.3469701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Hypertension is a chronic disease with high morbidity and high mortality in the world. Its pathogenesis is complicated and its molecular mechanism has not been fully elucidated, which seriously threatens human life and health. The purpose of this paper was to the molecular study of hypertension, explore candidate biomarkers affecting the occurrence of hypertension from the perspective of weighted network, and provide the theoretical and practical basis for the prevention and treatment of hypertension. Materials and methods: The hypertension gene expression dataset of GSE75360 were downloaded from the Gene Expression Omnibus (GEO). The “limma” package of R was utilized to screen the differentially expressed genes (DEGs) between the sample group with and without high blood pressure. Next, Weight Gene co-expression Network Analysis (WGCNA) algorithm was used to establish a co-expression network of the DEGs and to detect hypertension-related gene modules. And DAVID was utilized to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we proposed the hierarchical fusion method to screen hub genes. Results: We identified 2 key gene modules that were significantly associated with hypertension, named Mlightcyan and Mgreenyellow. In addition, 18 hub genes (RPS28, LOC730288/RPS28P6, LOC645968/ RPS3AP25, LOC727826/RPS11P5, RPL21, LOC653079/ RPL36P14, LOC441743/RPL23AP5, LOC651453/RPL36P14, LPPR2, NSMCE4A, FKBP1A, RAB5C, MAN2B1, FURIN, TBXAS1, RPS6KA4, PARN, LOC642489/FKBP1C) relating to hypertension were identified form the two key gene modules. Conclusions: In this study, we identified two key gene modules and 18 hub genes, which were associated with the mechanisms of hypertension. These findings will provide references that improve the understanding of the pathogenesis of hypertension. The hub genes might can serve as therapeutic targets for diagnosis of hypertension in the future.\",\"PeriodicalId\":22513,\"journal\":{\"name\":\"The Fifth International Conference on Biological Information and Biomedical Engineering\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Fifth International Conference on Biological Information and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469678.3469701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fifth International Conference on Biological Information and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469678.3469701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of Key Gene Modules and Hub Genes of Hypertension Based on WGCNA Algorithm
Background: Hypertension is a chronic disease with high morbidity and high mortality in the world. Its pathogenesis is complicated and its molecular mechanism has not been fully elucidated, which seriously threatens human life and health. The purpose of this paper was to the molecular study of hypertension, explore candidate biomarkers affecting the occurrence of hypertension from the perspective of weighted network, and provide the theoretical and practical basis for the prevention and treatment of hypertension. Materials and methods: The hypertension gene expression dataset of GSE75360 were downloaded from the Gene Expression Omnibus (GEO). The “limma” package of R was utilized to screen the differentially expressed genes (DEGs) between the sample group with and without high blood pressure. Next, Weight Gene co-expression Network Analysis (WGCNA) algorithm was used to establish a co-expression network of the DEGs and to detect hypertension-related gene modules. And DAVID was utilized to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, we proposed the hierarchical fusion method to screen hub genes. Results: We identified 2 key gene modules that were significantly associated with hypertension, named Mlightcyan and Mgreenyellow. In addition, 18 hub genes (RPS28, LOC730288/RPS28P6, LOC645968/ RPS3AP25, LOC727826/RPS11P5, RPL21, LOC653079/ RPL36P14, LOC441743/RPL23AP5, LOC651453/RPL36P14, LPPR2, NSMCE4A, FKBP1A, RAB5C, MAN2B1, FURIN, TBXAS1, RPS6KA4, PARN, LOC642489/FKBP1C) relating to hypertension were identified form the two key gene modules. Conclusions: In this study, we identified two key gene modules and 18 hub genes, which were associated with the mechanisms of hypertension. These findings will provide references that improve the understanding of the pathogenesis of hypertension. The hub genes might can serve as therapeutic targets for diagnosis of hypertension in the future.