{"title":"图的k独立数的nordhaus - gaddum型结果","authors":"Zhao Wang, Hongfang Liu, Yuhu Liu","doi":"10.1142/s021926592350007x","DOIUrl":null,"url":null,"abstract":"The concept of [Formula: see text]-independent set, introduced by Fink and Jacobson in 1986, is a natural generalization of classical independence set. A k-independent set is a set of vertices whose induced subgraph has maximum degree at most [Formula: see text]. The k-independence number of [Formula: see text], denoted by [Formula: see text], is defined as the maximum cardinality of a [Formula: see text]-independent set of [Formula: see text]. As a natural counterpart of the [Formula: see text]-independence number, we introduced the concept of [Formula: see text]-edge-independence number. An edge set [Formula: see text] in [Formula: see text] is called k-edge-independent if the maximum degree of the subgraph induced by the edges in [Formula: see text] is less or equal to [Formula: see text]. The k-edge-independence number, denoted [Formula: see text], is defined as the maximum cardinality of a [Formula: see text]-edge-independent set. In this paper, we study the Nordhaus–Gaddum-type results for the parameter [Formula: see text] and [Formula: see text]. We obtain sharp upper and lower bounds of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] for a graph [Formula: see text] of order [Formula: see text]. Some graph classes attaining these bounds are also given.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":"36 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nordhaus–Gaddum-Type Results for the k-Independent Number of Graphs\",\"authors\":\"Zhao Wang, Hongfang Liu, Yuhu Liu\",\"doi\":\"10.1142/s021926592350007x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of [Formula: see text]-independent set, introduced by Fink and Jacobson in 1986, is a natural generalization of classical independence set. A k-independent set is a set of vertices whose induced subgraph has maximum degree at most [Formula: see text]. The k-independence number of [Formula: see text], denoted by [Formula: see text], is defined as the maximum cardinality of a [Formula: see text]-independent set of [Formula: see text]. As a natural counterpart of the [Formula: see text]-independence number, we introduced the concept of [Formula: see text]-edge-independence number. An edge set [Formula: see text] in [Formula: see text] is called k-edge-independent if the maximum degree of the subgraph induced by the edges in [Formula: see text] is less or equal to [Formula: see text]. The k-edge-independence number, denoted [Formula: see text], is defined as the maximum cardinality of a [Formula: see text]-edge-independent set. In this paper, we study the Nordhaus–Gaddum-type results for the parameter [Formula: see text] and [Formula: see text]. We obtain sharp upper and lower bounds of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] for a graph [Formula: see text] of order [Formula: see text]. Some graph classes attaining these bounds are also given.\",\"PeriodicalId\":53990,\"journal\":{\"name\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INTERCONNECTION NETWORKS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021926592350007x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021926592350007x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Nordhaus–Gaddum-Type Results for the k-Independent Number of Graphs
The concept of [Formula: see text]-independent set, introduced by Fink and Jacobson in 1986, is a natural generalization of classical independence set. A k-independent set is a set of vertices whose induced subgraph has maximum degree at most [Formula: see text]. The k-independence number of [Formula: see text], denoted by [Formula: see text], is defined as the maximum cardinality of a [Formula: see text]-independent set of [Formula: see text]. As a natural counterpart of the [Formula: see text]-independence number, we introduced the concept of [Formula: see text]-edge-independence number. An edge set [Formula: see text] in [Formula: see text] is called k-edge-independent if the maximum degree of the subgraph induced by the edges in [Formula: see text] is less or equal to [Formula: see text]. The k-edge-independence number, denoted [Formula: see text], is defined as the maximum cardinality of a [Formula: see text]-edge-independent set. In this paper, we study the Nordhaus–Gaddum-type results for the parameter [Formula: see text] and [Formula: see text]. We obtain sharp upper and lower bounds of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] for a graph [Formula: see text] of order [Formula: see text]. Some graph classes attaining these bounds are also given.
期刊介绍:
The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.