基于光伏系统的交错升压变换器积分反演控制器

{"title":"基于光伏系统的交错升压变换器积分反演控制器","authors":"","doi":"10.46904/eea.23.71.1.1108002","DOIUrl":null,"url":null,"abstract":"Photovoltaic systems are one of the most widely used technologies for sustainable energy production due to their various advantages, such as being clean, free, and renewable energy sources. However, the power generated by the PV systems is strongly dependent on the atmospheric conditions. In addition, a suitable DC/DC converter must be used with a robust controller to facilitate system operation point changes associated with the changed climate conditions. In this paper, to deal with this challenge, a photovoltaic system based on four leg interleaved boost converter (FLIBC) has been proposed and studied. For robustness, the presented system is controlled using nonlinear integral backstepping control (IBSC) to track the maximum power point (MPP) and ensure an equal sharing current among the FLIBC legs. Moreover, the particle swarm optimization algorithm is used to find the optimum gains of the proposed IBSC. The entire system is simulated and validated using MATLAB/ Simulink environment. The simulation results demonstrate the efficiency of the proposed system based on the optimized IBSC (OIBSC) controller in terms of MPP tracking speed, overshoot and undershoot reduction, power ripple, and optimization of the performance term integral time square error (ITSE).","PeriodicalId":38292,"journal":{"name":"EEA - Electrotehnica, Electronica, Automatica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integral-Backstepping Controller for Interleaved Boost Converter based on Photovoltaic Systems\",\"authors\":\"\",\"doi\":\"10.46904/eea.23.71.1.1108002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic systems are one of the most widely used technologies for sustainable energy production due to their various advantages, such as being clean, free, and renewable energy sources. However, the power generated by the PV systems is strongly dependent on the atmospheric conditions. In addition, a suitable DC/DC converter must be used with a robust controller to facilitate system operation point changes associated with the changed climate conditions. In this paper, to deal with this challenge, a photovoltaic system based on four leg interleaved boost converter (FLIBC) has been proposed and studied. For robustness, the presented system is controlled using nonlinear integral backstepping control (IBSC) to track the maximum power point (MPP) and ensure an equal sharing current among the FLIBC legs. Moreover, the particle swarm optimization algorithm is used to find the optimum gains of the proposed IBSC. The entire system is simulated and validated using MATLAB/ Simulink environment. The simulation results demonstrate the efficiency of the proposed system based on the optimized IBSC (OIBSC) controller in terms of MPP tracking speed, overshoot and undershoot reduction, power ripple, and optimization of the performance term integral time square error (ITSE).\",\"PeriodicalId\":38292,\"journal\":{\"name\":\"EEA - Electrotehnica, Electronica, Automatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EEA - Electrotehnica, Electronica, Automatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46904/eea.23.71.1.1108002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EEA - Electrotehnica, Electronica, Automatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46904/eea.23.71.1.1108002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光伏系统具有清洁、免费、可再生等优点,是目前应用最广泛的可持续能源生产技术之一。然而,光伏系统产生的电力强烈依赖于大气条件。此外,必须使用合适的DC/DC转换器和鲁棒控制器,以促进与气候条件变化相关的系统工作点变化。为了解决这一问题,本文提出并研究了一种基于四腿交错升压变换器(FLIBC)的光伏系统。为了提高系统的鲁棒性,采用非线性积分反步控制(IBSC)来跟踪最大功率点(MPP),并确保FLIBC分支之间的共享电流相等。此外,采用粒子群优化算法对所提出的IBSC进行优化。在MATLAB/ Simulink环境下对整个系统进行了仿真和验证。仿真结果证明了基于优化后的IBSC (OIBSC)控制器的系统在MPP跟踪速度、超调和欠调减小、功率纹波和性能项积分时方误差(ITSE)优化方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Integral-Backstepping Controller for Interleaved Boost Converter based on Photovoltaic Systems
Photovoltaic systems are one of the most widely used technologies for sustainable energy production due to their various advantages, such as being clean, free, and renewable energy sources. However, the power generated by the PV systems is strongly dependent on the atmospheric conditions. In addition, a suitable DC/DC converter must be used with a robust controller to facilitate system operation point changes associated with the changed climate conditions. In this paper, to deal with this challenge, a photovoltaic system based on four leg interleaved boost converter (FLIBC) has been proposed and studied. For robustness, the presented system is controlled using nonlinear integral backstepping control (IBSC) to track the maximum power point (MPP) and ensure an equal sharing current among the FLIBC legs. Moreover, the particle swarm optimization algorithm is used to find the optimum gains of the proposed IBSC. The entire system is simulated and validated using MATLAB/ Simulink environment. The simulation results demonstrate the efficiency of the proposed system based on the optimized IBSC (OIBSC) controller in terms of MPP tracking speed, overshoot and undershoot reduction, power ripple, and optimization of the performance term integral time square error (ITSE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EEA - Electrotehnica, Electronica, Automatica
EEA - Electrotehnica, Electronica, Automatica Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
26
期刊最新文献
Flexion Angle Estimation from Single Channel Forearm EMG Signals using Effective Features Ontology and Nanotechnologies Comparison of Intelligent Control Methods Performance in the UPFC Controllers Design for Power Flow Reference Tracking Stick-Slip Movement in Driving Axles of Railway Vehicles equipped with Damping Devices A Measuring System for HTS Wires and Coils Properties at Low Temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1