生成一个双层合成人口为法国直辖市:结果和评价四种合成重建方法

B. Yameogo, P. Vandanjon, Pascal Gastineau, P. Hankach
{"title":"生成一个双层合成人口为法国直辖市:结果和评价四种合成重建方法","authors":"B. Yameogo, P. Vandanjon, Pascal Gastineau, P. Hankach","doi":"10.18564/jasss.4482","DOIUrl":null,"url":null,"abstract":": This article describes the generation of a detailed two-layered synthetic population of households and individuals for French municipalities. Using French census data, four synthetic reconstruction methods associated with two probabilistic integerization methods are applied. The paper offers an in-depth description of each method through a common framework. A comparison of these methods is then carried out on the basis of various criteria. Results showed that the tested algorithms produce realistic synthetic populations with the most efficient synthetic reconstruction methods assessed being the Hierarchical Iterative Proportional Fitting and the relative entropy minimization algorithms. Combined with the Truncation Replication Sampling allocation method for performing integerization, these algorithms generate household-level and individual-level data whose values lie closest to those of the actual population. using four indicators: R SAE, all good results, a characteristics to the some the fitting step, minimization (HIPF) the step,","PeriodicalId":14675,"journal":{"name":"J. Artif. Soc. Soc. Simul.","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generating a Two-Layered Synthetic Population for French Municipalities: Results and Evaluation of Four Synthetic Reconstruction Methods\",\"authors\":\"B. Yameogo, P. Vandanjon, Pascal Gastineau, P. Hankach\",\"doi\":\"10.18564/jasss.4482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This article describes the generation of a detailed two-layered synthetic population of households and individuals for French municipalities. Using French census data, four synthetic reconstruction methods associated with two probabilistic integerization methods are applied. The paper offers an in-depth description of each method through a common framework. A comparison of these methods is then carried out on the basis of various criteria. Results showed that the tested algorithms produce realistic synthetic populations with the most efficient synthetic reconstruction methods assessed being the Hierarchical Iterative Proportional Fitting and the relative entropy minimization algorithms. Combined with the Truncation Replication Sampling allocation method for performing integerization, these algorithms generate household-level and individual-level data whose values lie closest to those of the actual population. using four indicators: R SAE, all good results, a characteristics to the some the fitting step, minimization (HIPF) the step,\",\"PeriodicalId\":14675,\"journal\":{\"name\":\"J. Artif. Soc. Soc. Simul.\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Artif. Soc. Soc. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18564/jasss.4482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Artif. Soc. Soc. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18564/jasss.4482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文详细描述了法国市政当局家庭和个人两层合成人口的生成。以法国人口普查数据为例,采用了四种综合重建方法和两种概率积分方法。本文通过一个通用框架对每种方法进行了深入的描述。然后根据各种标准对这些方法进行比较。结果表明,所测试的算法能生成真实的合成种群,其中最有效的合成重建方法是层次迭代比例拟合和相对熵最小化算法。结合截断复制抽样分配方法进行整合,这些算法生成的家庭级和个人级数据的值最接近实际人口的值。采用四个指标:R SAE,所有好的结果,a特征到一些拟合的步骤,最小化(HIPF)的步骤,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating a Two-Layered Synthetic Population for French Municipalities: Results and Evaluation of Four Synthetic Reconstruction Methods
: This article describes the generation of a detailed two-layered synthetic population of households and individuals for French municipalities. Using French census data, four synthetic reconstruction methods associated with two probabilistic integerization methods are applied. The paper offers an in-depth description of each method through a common framework. A comparison of these methods is then carried out on the basis of various criteria. Results showed that the tested algorithms produce realistic synthetic populations with the most efficient synthetic reconstruction methods assessed being the Hierarchical Iterative Proportional Fitting and the relative entropy minimization algorithms. Combined with the Truncation Replication Sampling allocation method for performing integerization, these algorithms generate household-level and individual-level data whose values lie closest to those of the actual population. using four indicators: R SAE, all good results, a characteristics to the some the fitting step, minimization (HIPF) the step,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conflicting Information and Compliance with COVID-19 Behavioral Recommendations Particle Swarm Optimization for Calibration in Spatially Explicit Agent-Based Modeling The Role of Reinforcement Learning in the Emergence of Conventions: Simulation Experiments with the Repeated Volunteer's Dilemma Generation of Synthetic Populations in Social Simulations: A Review of Methods and Practices An Integrated Ecological-Social Simulation Model of Farmer Decisions and Cropping System Performance in the Rolling Pampas (Argentina)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1