C. Fabbri, H. A. Al Saadi, Ke-hui Wang, F. Maire, C. Romero, P. Cordelier, C. Prinet, S. Jouenne, O. Garnier, Siqing Xu, J. Leon, M. Baslaib, S. Masalmeh
{"title":"聚合物注入解锁巨型碳酸盐岩储层的旁路油:弥合实验室与大规模聚合物项目之间的差距","authors":"C. Fabbri, H. A. Al Saadi, Ke-hui Wang, F. Maire, C. Romero, P. Cordelier, C. Prinet, S. Jouenne, O. Garnier, Siqing Xu, J. Leon, M. Baslaib, S. Masalmeh","doi":"10.2118/208121-ms","DOIUrl":null,"url":null,"abstract":"\n Polymer flooding has long been proposed to improve sweep efficiency in heterogeneous reservoirs where polymer enhances cross flow between layers and forces water into the low permeability layers, leading to more homogeneous saturation profile. Although this approach could unlock large volumes of by-passed oil in layered carbonate reservoirs, compatibility of polymer solutions with high salinity - high temperature carbonate reservoirs has been hindering polymer injection projects in such harsh conditions. The aim of this paper is to present the laboratory work, polymer injection field test results and pilot design aimed to unlock target tertiary oil recovery in a highly heterogeneous mixed to oil-wet giant carbonate reservoir.\n This paper focuses on a highly layered limestone reservoir with various levels of cyclicity in properties. This reservoir may be divided in two main bodies, i.e., an Upper zone and a Lower zone with permeability contrast of up to two orders of magnitude. The main part of the reservoir is currently under peripheral and mid-flank water injection. Field observations show that injected water tends to channel quickly through the Upper zone along the high permeability layers and bypass the oil in the Lower zone. Past studies have indicated that this water override phenomenon is caused by a combination of high permeability contrast and capillary forces which counteract gravity forces. In this setting, adequate polymer injection strategy to enhance cross-flow between these zones is investigated, building on laboratory and polymer injection test field results.\n A key prerequisite for defining such EOR development scenario is to have representative static and dynamic models that captures the geological heterogeneity of this kind of reservoirs. This is achieved by an improved and integrated reservoir characterization, modelling and water injection history matching procedure. The history matched model was used to investigate different polymer injection schemes and resulted in an optimum pilot design. The injection scheme is defined based on dynamic simulations to maximize value, building on results from single-well polymer injection test, laboratory work and on previous published work, which have demonstrated the potential of polymer flooding for this reservoir. Our study evidences the positive impact of polymer propagation at field scale, improving the water-front stability, which is a function of pressure gradient near producer wells. Sensitivities to the position and number of polymer injectors have been performed to identify the best injection configuration, depending on the existing water injection scheme and the operating constraints.\n The pilot design proposed builds on laboratory work and field monitoring data gathered during single-well polymer injection field test. Together, these elements represent building blocks to enable tertiary polymer recovery in giant heterogeneous carbonate reservoirs with high temperature - high salinity conditions.","PeriodicalId":10981,"journal":{"name":"Day 4 Thu, November 18, 2021","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polymer Injection to Unlock Bypassed Oil in a Giant Carbonate Reservoir: Bridging the Gap Between Laboratory and Large Scale Polymer Project\",\"authors\":\"C. Fabbri, H. A. Al Saadi, Ke-hui Wang, F. Maire, C. Romero, P. Cordelier, C. Prinet, S. Jouenne, O. Garnier, Siqing Xu, J. Leon, M. Baslaib, S. Masalmeh\",\"doi\":\"10.2118/208121-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polymer flooding has long been proposed to improve sweep efficiency in heterogeneous reservoirs where polymer enhances cross flow between layers and forces water into the low permeability layers, leading to more homogeneous saturation profile. Although this approach could unlock large volumes of by-passed oil in layered carbonate reservoirs, compatibility of polymer solutions with high salinity - high temperature carbonate reservoirs has been hindering polymer injection projects in such harsh conditions. The aim of this paper is to present the laboratory work, polymer injection field test results and pilot design aimed to unlock target tertiary oil recovery in a highly heterogeneous mixed to oil-wet giant carbonate reservoir.\\n This paper focuses on a highly layered limestone reservoir with various levels of cyclicity in properties. This reservoir may be divided in two main bodies, i.e., an Upper zone and a Lower zone with permeability contrast of up to two orders of magnitude. The main part of the reservoir is currently under peripheral and mid-flank water injection. Field observations show that injected water tends to channel quickly through the Upper zone along the high permeability layers and bypass the oil in the Lower zone. Past studies have indicated that this water override phenomenon is caused by a combination of high permeability contrast and capillary forces which counteract gravity forces. In this setting, adequate polymer injection strategy to enhance cross-flow between these zones is investigated, building on laboratory and polymer injection test field results.\\n A key prerequisite for defining such EOR development scenario is to have representative static and dynamic models that captures the geological heterogeneity of this kind of reservoirs. This is achieved by an improved and integrated reservoir characterization, modelling and water injection history matching procedure. The history matched model was used to investigate different polymer injection schemes and resulted in an optimum pilot design. The injection scheme is defined based on dynamic simulations to maximize value, building on results from single-well polymer injection test, laboratory work and on previous published work, which have demonstrated the potential of polymer flooding for this reservoir. Our study evidences the positive impact of polymer propagation at field scale, improving the water-front stability, which is a function of pressure gradient near producer wells. Sensitivities to the position and number of polymer injectors have been performed to identify the best injection configuration, depending on the existing water injection scheme and the operating constraints.\\n The pilot design proposed builds on laboratory work and field monitoring data gathered during single-well polymer injection field test. Together, these elements represent building blocks to enable tertiary polymer recovery in giant heterogeneous carbonate reservoirs with high temperature - high salinity conditions.\",\"PeriodicalId\":10981,\"journal\":{\"name\":\"Day 4 Thu, November 18, 2021\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 18, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208121-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208121-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polymer Injection to Unlock Bypassed Oil in a Giant Carbonate Reservoir: Bridging the Gap Between Laboratory and Large Scale Polymer Project
Polymer flooding has long been proposed to improve sweep efficiency in heterogeneous reservoirs where polymer enhances cross flow between layers and forces water into the low permeability layers, leading to more homogeneous saturation profile. Although this approach could unlock large volumes of by-passed oil in layered carbonate reservoirs, compatibility of polymer solutions with high salinity - high temperature carbonate reservoirs has been hindering polymer injection projects in such harsh conditions. The aim of this paper is to present the laboratory work, polymer injection field test results and pilot design aimed to unlock target tertiary oil recovery in a highly heterogeneous mixed to oil-wet giant carbonate reservoir.
This paper focuses on a highly layered limestone reservoir with various levels of cyclicity in properties. This reservoir may be divided in two main bodies, i.e., an Upper zone and a Lower zone with permeability contrast of up to two orders of magnitude. The main part of the reservoir is currently under peripheral and mid-flank water injection. Field observations show that injected water tends to channel quickly through the Upper zone along the high permeability layers and bypass the oil in the Lower zone. Past studies have indicated that this water override phenomenon is caused by a combination of high permeability contrast and capillary forces which counteract gravity forces. In this setting, adequate polymer injection strategy to enhance cross-flow between these zones is investigated, building on laboratory and polymer injection test field results.
A key prerequisite for defining such EOR development scenario is to have representative static and dynamic models that captures the geological heterogeneity of this kind of reservoirs. This is achieved by an improved and integrated reservoir characterization, modelling and water injection history matching procedure. The history matched model was used to investigate different polymer injection schemes and resulted in an optimum pilot design. The injection scheme is defined based on dynamic simulations to maximize value, building on results from single-well polymer injection test, laboratory work and on previous published work, which have demonstrated the potential of polymer flooding for this reservoir. Our study evidences the positive impact of polymer propagation at field scale, improving the water-front stability, which is a function of pressure gradient near producer wells. Sensitivities to the position and number of polymer injectors have been performed to identify the best injection configuration, depending on the existing water injection scheme and the operating constraints.
The pilot design proposed builds on laboratory work and field monitoring data gathered during single-well polymer injection field test. Together, these elements represent building blocks to enable tertiary polymer recovery in giant heterogeneous carbonate reservoirs with high temperature - high salinity conditions.