基于特征的随机森林护理活动识别,利用加速度计数据

Carolin Lübbe, Björn Friedrich, Sebastian J. F. Fudickar, S. Hellmers, A. Hein
{"title":"基于特征的随机森林护理活动识别,利用加速度计数据","authors":"Carolin Lübbe, Björn Friedrich, Sebastian J. F. Fudickar, S. Hellmers, A. Hein","doi":"10.1145/3410530.3414340","DOIUrl":null,"url":null,"abstract":"The The 2nd Nurse Care Activity Recognition Challenge Using Lab and Field Data addresses the important issue about care and the need for assistance systems in the nursing profession like automatic documentation systems. Data of 12 different care activities were recorded with an accelerometer attached to the right arm of the nurses. Both, laboratory and field data were taken into account. The task was to classify each activity based on the accelerometer data. We participated as team Gudetama in the challenge. We trained a Random Forest classifier and achieved an accuracy of 61.11% on our internal test set.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Feature based random forest nurse care activity recognition using accelerometer data\",\"authors\":\"Carolin Lübbe, Björn Friedrich, Sebastian J. F. Fudickar, S. Hellmers, A. Hein\",\"doi\":\"10.1145/3410530.3414340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The The 2nd Nurse Care Activity Recognition Challenge Using Lab and Field Data addresses the important issue about care and the need for assistance systems in the nursing profession like automatic documentation systems. Data of 12 different care activities were recorded with an accelerometer attached to the right arm of the nurses. Both, laboratory and field data were taken into account. The task was to classify each activity based on the accelerometer data. We participated as team Gudetama in the challenge. We trained a Random Forest classifier and achieved an accuracy of 61.11% on our internal test set.\",\"PeriodicalId\":7183,\"journal\":{\"name\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3410530.3414340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

使用实验室和现场数据的第二次护士护理活动识别挑战解决了关于护理的重要问题和护理专业中对辅助系统(如自动文档系统)的需求。12种不同护理活动的数据用附着在护士右臂上的加速度计记录下来。同时考虑了实验室和现场数据。任务是根据加速度计的数据对每个活动进行分类。我们作为瓜德玛队参加了这次挑战。我们训练了一个随机森林分类器,在我们的内部测试集上达到了61.11%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature based random forest nurse care activity recognition using accelerometer data
The The 2nd Nurse Care Activity Recognition Challenge Using Lab and Field Data addresses the important issue about care and the need for assistance systems in the nursing profession like automatic documentation systems. Data of 12 different care activities were recorded with an accelerometer attached to the right arm of the nurses. Both, laboratory and field data were taken into account. The task was to classify each activity based on the accelerometer data. We participated as team Gudetama in the challenge. We trained a Random Forest classifier and achieved an accuracy of 61.11% on our internal test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using gamification to create and label photos that are challenging for computer vision and people Pose evaluation for dance learning application using joint position and angular similarity SParking: a win-win data-driven contract parking sharing system HeadgearX Blink rate variability: a marker of sustained attention during a visual task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1