层次图像分割的尺度感知对齐

Yuhua Chen, Dengxin Dai, J. Pont-Tuset, L. Gool
{"title":"层次图像分割的尺度感知对齐","authors":"Yuhua Chen, Dengxin Dai, J. Pont-Tuset, L. Gool","doi":"10.1109/CVPR.2016.46","DOIUrl":null,"url":null,"abstract":"Image segmentation is a key component in many computer vision systems, and it is recovering a prominent spot in the literature as methods improve and overcome their limitations. The outputs of most recent algorithms are in the form of a hierarchical segmentation, which provides segmentation at different scales in a single tree-like structure. Commonly, these hierarchical methods start from some low-level features, and are not aware of the scale information of the different regions in them. As such, one might need to work on many different levels of the hierarchy to find the objects in the scene. This work tries to modify the existing hierarchical algorithm by improving their alignment, that is, by trying to modify the depth of the regions in the tree to better couple depth and scale. To do so, we first train a regressor to predict the scale of regions using mid-level features. We then define the anchor slice as the set of regions that better balance between over-segmentation and under-segmentation. The output of our method is an improved hierarchy, re-aligned by the anchor slice. To demonstrate the power of our method, we perform comprehensive experiments, which show that our method, as a post-processing step, can significantly improve the quality of the hierarchical segmentation representations, and ease the usage of hierarchical image segmentation to high-level vision tasks such as object segmentation. We also prove that the improvement generalizes well across different algorithms and datasets, with a low computational cost.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"45 1","pages":"364-372"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Scale-Aware Alignment of Hierarchical Image Segmentation\",\"authors\":\"Yuhua Chen, Dengxin Dai, J. Pont-Tuset, L. Gool\",\"doi\":\"10.1109/CVPR.2016.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is a key component in many computer vision systems, and it is recovering a prominent spot in the literature as methods improve and overcome their limitations. The outputs of most recent algorithms are in the form of a hierarchical segmentation, which provides segmentation at different scales in a single tree-like structure. Commonly, these hierarchical methods start from some low-level features, and are not aware of the scale information of the different regions in them. As such, one might need to work on many different levels of the hierarchy to find the objects in the scene. This work tries to modify the existing hierarchical algorithm by improving their alignment, that is, by trying to modify the depth of the regions in the tree to better couple depth and scale. To do so, we first train a regressor to predict the scale of regions using mid-level features. We then define the anchor slice as the set of regions that better balance between over-segmentation and under-segmentation. The output of our method is an improved hierarchy, re-aligned by the anchor slice. To demonstrate the power of our method, we perform comprehensive experiments, which show that our method, as a post-processing step, can significantly improve the quality of the hierarchical segmentation representations, and ease the usage of hierarchical image segmentation to high-level vision tasks such as object segmentation. We also prove that the improvement generalizes well across different algorithms and datasets, with a low computational cost.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"45 1\",\"pages\":\"364-372\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

图像分割是许多计算机视觉系统的关键组成部分,随着方法的改进和克服其局限性,它正在恢复在文献中的突出位置。大多数最新算法的输出都是分层分割的形式,它在单个树状结构中提供不同尺度的分割。通常,这些分层方法从一些底层特征出发,不知道其中不同区域的尺度信息。因此,一个人可能需要在许多不同的层次上工作来找到场景中的对象。这项工作试图通过改进现有的分层算法的对齐来修改它们,即通过尝试修改树中区域的深度来更好地耦合深度和规模。为此,我们首先训练一个回归器来使用中级特征预测区域的规模。然后,我们将锚片定义为一组更好地平衡过分割和欠分割的区域。我们方法的输出是一个改进的层次结构,通过锚片重新对齐。为了证明我们的方法的强大,我们进行了全面的实验,结果表明,我们的方法作为后处理步骤,可以显着提高分层图像分割表示的质量,并简化了分层图像分割在高级视觉任务(如对象分割)中的使用。我们还证明了这种改进可以很好地推广到不同的算法和数据集,并且计算成本很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scale-Aware Alignment of Hierarchical Image Segmentation
Image segmentation is a key component in many computer vision systems, and it is recovering a prominent spot in the literature as methods improve and overcome their limitations. The outputs of most recent algorithms are in the form of a hierarchical segmentation, which provides segmentation at different scales in a single tree-like structure. Commonly, these hierarchical methods start from some low-level features, and are not aware of the scale information of the different regions in them. As such, one might need to work on many different levels of the hierarchy to find the objects in the scene. This work tries to modify the existing hierarchical algorithm by improving their alignment, that is, by trying to modify the depth of the regions in the tree to better couple depth and scale. To do so, we first train a regressor to predict the scale of regions using mid-level features. We then define the anchor slice as the set of regions that better balance between over-segmentation and under-segmentation. The output of our method is an improved hierarchy, re-aligned by the anchor slice. To demonstrate the power of our method, we perform comprehensive experiments, which show that our method, as a post-processing step, can significantly improve the quality of the hierarchical segmentation representations, and ease the usage of hierarchical image segmentation to high-level vision tasks such as object segmentation. We also prove that the improvement generalizes well across different algorithms and datasets, with a low computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1