纳米尺度的阿秒物理学

IF 19 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reports on Progress in Physics Pub Date : 2016-07-06 DOI:10.1088/1361-6633/aa574e
M. Ciappina, J. A. Pérez-Hernández, A. Landsman, W. Okell, S. Zherebtsov, B. Förg, J. Schötz, L. Seiffert, T. Fennel, T. Shaaran, Tomáš Zimmermann, Tomáš Zimmermann, Alexis Chacon, R. Guichard, A. Zaïr, J. Tisch, J. P. Marangos, T. Witting, Avi Braun, Stefan A. Maier, Luis Roso, Michael Krüger, Michael Krüger, Michael Krüger, P. Hommelhoff, P. Hommelhoff, Matthias F. Kling, Matthias F. Kling, F. Krausz, F. Krausz, M. Lewenstein
{"title":"纳米尺度的阿秒物理学","authors":"M. Ciappina, J. A. Pérez-Hernández, A. Landsman, W. Okell, S. Zherebtsov, B. Förg, J. Schötz, L. Seiffert, T. Fennel, T. Shaaran, Tomáš Zimmermann, Tomáš Zimmermann, Alexis Chacon, R. Guichard, A. Zaïr, J. Tisch, J. P. Marangos, T. Witting, Avi Braun, Stefan A. Maier, Luis Roso, Michael Krüger, Michael Krüger, Michael Krüger, P. Hommelhoff, P. Hommelhoff, Matthias F. Kling, Matthias F. Kling, F. Krausz, F. Krausz, M. Lewenstein","doi":"10.1088/1361-6633/aa574e","DOIUrl":null,"url":null,"abstract":"Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10−18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"57 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"267","resultStr":"{\"title\":\"Attosecond physics at the nanoscale\",\"authors\":\"M. Ciappina, J. A. Pérez-Hernández, A. Landsman, W. Okell, S. Zherebtsov, B. Förg, J. Schötz, L. Seiffert, T. Fennel, T. Shaaran, Tomáš Zimmermann, Tomáš Zimmermann, Alexis Chacon, R. Guichard, A. Zaïr, J. Tisch, J. P. Marangos, T. Witting, Avi Braun, Stefan A. Maier, Luis Roso, Michael Krüger, Michael Krüger, Michael Krüger, P. Hommelhoff, P. Hommelhoff, Matthias F. Kling, Matthias F. Kling, F. Krausz, F. Krausz, M. Lewenstein\",\"doi\":\"10.1088/1361-6633/aa574e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10−18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"267\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/aa574e\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/aa574e","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 267

摘要

最近两个新兴的研究领域,阿秒和纳米物理,开始走到一起。阿秒物理学研究的是持续时间在飞秒和亚飞秒的超短激光脉冲与原子、分子或固体相互作用时发生的现象。激光诱导的电子动力学发生在几百甚至几十阿秒的时间尺度上(1阿秒= 1 as = 10−18 s),这与光场相当。相比之下,氢原子1s轨道上电子的公转是~ 152 as。另一方面,第二个分支涉及以纳米精度操纵和工程介观系统,如固体、金属和电介质。虽然纳米工程本身是一个庞大而成熟的研究领域,但它与强激光物理学的结合相对较晚。在这篇关于进展的报告中,我们对短而强的激光脉冲与纳米系统(如金属和介电纳米结构)相互作用时所发生的物理学进行了全面的实验和理论概述。特别地,我们阐明了在纳米尺度上空间非均匀的激光诱导场如何改变激光驱动的电子动力学。因此,这对阈值以上电离和高次谐波产生等关键过程具有重要影响。对这些空间非均匀场和物质之间耦合动力学的深刻理解为研究和应用的新途径提供了一条有希望的途径。由于阿秒物理学的成熟,以及材料工程和操作技术的巨大进步,阿秒纳米物理学的时代已经开始,但它还处于初级阶段。因此,我们提出了一些悬而未决的问题,挑战和前景的实验证实的理论预测,以及实验旨在表征感应场和独特的电子动力学由他们发起的高时间和空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attosecond physics at the nanoscale
Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10−18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Progress in Physics
Reports on Progress in Physics 物理-物理:综合
CiteScore
31.90
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.
期刊最新文献
Key Issues Review: Useful autonomous quantum machines. Recent developments in tornado theory and observations. A comprehensive review of quantum machine learning: from NISQ to fault tolerance. Physics and technology of Laser Lightning Control. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1