{"title":"列举具有四水平和二水平因子的规则分数因子设计","authors":"Alexandre Bohyn, E. Schoen, P. Goos","doi":"10.1093/jrsssc/qlad031","DOIUrl":null,"url":null,"abstract":"\n Designs for screening experiments usually include factors with two levels only. Adding a few four-level factors allows for the inclusion of multi-level categorical factors or quantitative factors with possible quadratic or third-order effects. Three examples motivated us to generate a large catalogue of designs with two-level factors as well as four-level factors. To create the catalogue, we considered three methods. In the first method, we select designs using a search table, and in the second method, we use a procedure that selects candidate designs based on the properties of their projections into fewer factors. The third method is actually a benchmark method, in which we use a general orthogonal array enumeration algorithm. We compare the efficiencies of the new methods for generating complete sets of nonisomorphic designs. Finally, we use the most efficient method to generate a catalogue of designs with up to three four-level factors and up to 20 two-level factors for run sizes 16, 32, 64, and 128. In some cases, a complete enumeration was infeasible. For these cases, we used a bounded enumeration strategy instead. We demonstrate the usefulness of the catalogue by revisiting the motivating examples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of regular fractional factorial designs with four-level and two-level factors\",\"authors\":\"Alexandre Bohyn, E. Schoen, P. Goos\",\"doi\":\"10.1093/jrsssc/qlad031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Designs for screening experiments usually include factors with two levels only. Adding a few four-level factors allows for the inclusion of multi-level categorical factors or quantitative factors with possible quadratic or third-order effects. Three examples motivated us to generate a large catalogue of designs with two-level factors as well as four-level factors. To create the catalogue, we considered three methods. In the first method, we select designs using a search table, and in the second method, we use a procedure that selects candidate designs based on the properties of their projections into fewer factors. The third method is actually a benchmark method, in which we use a general orthogonal array enumeration algorithm. We compare the efficiencies of the new methods for generating complete sets of nonisomorphic designs. Finally, we use the most efficient method to generate a catalogue of designs with up to three four-level factors and up to 20 two-level factors for run sizes 16, 32, 64, and 128. In some cases, a complete enumeration was infeasible. For these cases, we used a bounded enumeration strategy instead. We demonstrate the usefulness of the catalogue by revisiting the motivating examples.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlad031\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enumeration of regular fractional factorial designs with four-level and two-level factors
Designs for screening experiments usually include factors with two levels only. Adding a few four-level factors allows for the inclusion of multi-level categorical factors or quantitative factors with possible quadratic or third-order effects. Three examples motivated us to generate a large catalogue of designs with two-level factors as well as four-level factors. To create the catalogue, we considered three methods. In the first method, we select designs using a search table, and in the second method, we use a procedure that selects candidate designs based on the properties of their projections into fewer factors. The third method is actually a benchmark method, in which we use a general orthogonal array enumeration algorithm. We compare the efficiencies of the new methods for generating complete sets of nonisomorphic designs. Finally, we use the most efficient method to generate a catalogue of designs with up to three four-level factors and up to 20 two-level factors for run sizes 16, 32, 64, and 128. In some cases, a complete enumeration was infeasible. For these cases, we used a bounded enumeration strategy instead. We demonstrate the usefulness of the catalogue by revisiting the motivating examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.