Henipaviruses 和 lyssaviruses 靶向核小体treacle蛋白并调节核糖体RNA的合成。

IF 3.6 3区 生物学 Q3 CELL BIOLOGY Traffic Pub Date : 2023-03-01 Epub Date: 2022-12-30 DOI:10.1111/tra.12877
Stephen M Rawlinson, Tianyue Zhao, Katie Ardipradja, Yilin Zhang, Patrick F Veugelers, Jennifer A Harper, Cassandra T David, Vinod Sundaramoorthy, Gregory W Moseley
{"title":"Henipaviruses 和 lyssaviruses 靶向核小体treacle蛋白并调节核糖体RNA的合成。","authors":"Stephen M Rawlinson, Tianyue Zhao, Katie Ardipradja, Yilin Zhang, Patrick F Veugelers, Jennifer A Harper, Cassandra T David, Vinod Sundaramoorthy, Gregory W Moseley","doi":"10.1111/tra.12877","DOIUrl":null,"url":null,"abstract":"<p><p>The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947316/pdf/","citationCount":"0","resultStr":"{\"title\":\"Henipaviruses and lyssaviruses target nucleolar treacle protein and regulate ribosomal RNA synthesis.\",\"authors\":\"Stephen M Rawlinson, Tianyue Zhao, Katie Ardipradja, Yilin Zhang, Patrick F Veugelers, Jennifer A Harper, Cassandra T David, Vinod Sundaramoorthy, Gregory W Moseley\",\"doi\":\"10.1111/tra.12877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.</p>\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947316/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12877\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12877","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核仁是病毒和病毒蛋白的共同靶标,但对于许多病毒来说,这种靶标的功能结果和意义仍未得到解决。最近,人们首次发现了细胞质复制的负义 RNA 病毒(NSV)蛋白的核内功能,发现亨德拉病毒(HeV)(副粘病毒科,Henipavirus 属)的基质(M)蛋白与核小区内的 Treacle 蛋白相互作用,并模拟细胞核 DNA 损伤反应(DDR)机制来抑制核糖体 RNA(rRNA)的合成。至于其他病毒是否也利用了这一机制,我们尚未进行研究。我们报告说,核仁下 Treacle 靶向和调节功能在包括尼帕病毒和其他潜在人畜共患病毒在内的多种禽流感病毒的 M 蛋白之间是一致的。此外,不同 RNA 病毒科(Rhabdoviridae)的原型病毒狂犬病毒的 P3 蛋白也具有这种功能,细胞中 Treacle 的耗竭也会影响病毒的产生。这些数据表明,不同科病毒的不相关蛋白具有独立的细胞核/Treacle靶向功能,但对Treacle的调节对感染有不同的影响。因此,Treacle的颠覆可能是多种NSV感染的一个重要过程,从而为具有广泛特异性的抗病毒方法提供了新的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Henipaviruses and lyssaviruses target nucleolar treacle protein and regulate ribosomal RNA synthesis.

The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Traffic
Traffic 生物-细胞生物学
CiteScore
8.10
自引率
2.20%
发文量
50
审稿时长
2 months
期刊介绍: Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement. All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision. Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.
期刊最新文献
Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases. Mechanistic Insights Into an Ancient Adenovirus Precursor Protein VII Show Multiple Nuclear Import Receptor Pathways. Dissociation of Drosophila Evi-Wg Complex Occurs Post Apical Internalization in the Maturing Acidic Endosomes. Post-Transcriptional Regulation of Rab7a in Lysosomal Positioning and Drug Resistance in Nutrient-Limited Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1