井下地震成像技术在天然裂缝识别中的应用岩心和钻孔图像数据综合利用方法

A. Amer, A. Sajer, T. Al-Adwani, Hanan Salem, R. Abu-Taleb, Ali Abu-Guneej, A. Yateem, Vishnu Chilumuri, P. Goyal, S. Devkar
{"title":"井下地震成像技术在天然裂缝识别中的应用岩心和钻孔图像数据综合利用方法","authors":"A. Amer, A. Sajer, T. Al-Adwani, Hanan Salem, R. Abu-Taleb, Ali Abu-Guneej, A. Yateem, Vishnu Chilumuri, P. Goyal, S. Devkar","doi":"10.2118/194903-MS","DOIUrl":null,"url":null,"abstract":"\n Producing unconventional reservoirs characterized by low porosities and permeabilities during early stages of exploration and field appraisal can be challenging, especially in high temperature and high pressure (HPHT) downhole conditions. In such reservoirs, the natural fracture network can play a significant role in flowing hydrocarbons, increasing the importance of encountering such network by the boreholes.\n Consequently, the challenge would be to plan wells through these corridors, which is not always easy. To add to the challenge, well design restrictions dictate, the drilling of only vertical and in minor cases deviated wells. This can reduce the possibility of drilling through sub-vertical fracture sets significantly, and once seismic resolution is considered, it may seem that all odds are agents encountering a fracture network.\n This article addresses a case where a vertical well is drilled, in the above-mentioned reservoir setting, and missed the natural fracture system. The correct mitigation can make a difference between plugging and abandoning the well or putting it on production.\n The technique utilized is based on a borehole acoustic reflection survey (BARS) acquired over a vertical well to give a detailed insight on the fracture network 120 ft away from the borehole. Integrating this technique with core and high-resolution borehole image logs rendered an excellent match, increasing the confidence level in the acoustically predicted fracture corridors.\n Based on these findings new perforation intervals and hydraulic stimulation are proposed to optimize well performance. Such application can reverse the well decommissioning process, opening new opportunities for the rejuvenation of older wells.","PeriodicalId":11031,"journal":{"name":"Day 4 Thu, March 21, 2019","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Application of Downhole Seismic Imaging in Identifying Natural Fracture Systems; An Integrated Approach Utilizing Core and Borehole Image Data\",\"authors\":\"A. Amer, A. Sajer, T. Al-Adwani, Hanan Salem, R. Abu-Taleb, Ali Abu-Guneej, A. Yateem, Vishnu Chilumuri, P. Goyal, S. Devkar\",\"doi\":\"10.2118/194903-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Producing unconventional reservoirs characterized by low porosities and permeabilities during early stages of exploration and field appraisal can be challenging, especially in high temperature and high pressure (HPHT) downhole conditions. In such reservoirs, the natural fracture network can play a significant role in flowing hydrocarbons, increasing the importance of encountering such network by the boreholes.\\n Consequently, the challenge would be to plan wells through these corridors, which is not always easy. To add to the challenge, well design restrictions dictate, the drilling of only vertical and in minor cases deviated wells. This can reduce the possibility of drilling through sub-vertical fracture sets significantly, and once seismic resolution is considered, it may seem that all odds are agents encountering a fracture network.\\n This article addresses a case where a vertical well is drilled, in the above-mentioned reservoir setting, and missed the natural fracture system. The correct mitigation can make a difference between plugging and abandoning the well or putting it on production.\\n The technique utilized is based on a borehole acoustic reflection survey (BARS) acquired over a vertical well to give a detailed insight on the fracture network 120 ft away from the borehole. Integrating this technique with core and high-resolution borehole image logs rendered an excellent match, increasing the confidence level in the acoustically predicted fracture corridors.\\n Based on these findings new perforation intervals and hydraulic stimulation are proposed to optimize well performance. Such application can reverse the well decommissioning process, opening new opportunities for the rejuvenation of older wells.\",\"PeriodicalId\":11031,\"journal\":{\"name\":\"Day 4 Thu, March 21, 2019\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, March 21, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194903-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, March 21, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194903-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在勘探和现场评价的早期阶段,开发以低孔隙度和渗透率为特征的非常规油藏是具有挑战性的,特别是在高温高压(HPHT)井下条件下。在这类油藏中,天然裂缝网络对油气的流动起着重要作用,因此井眼遇到这种裂缝网络的重要性增加了。因此,在这些走廊上规划井的挑战并不总是那么容易。更大的挑战是,由于井的设计限制,只能钻直井和小斜度井。这可以大大降低钻穿亚垂直裂缝集的可能性,一旦考虑到地震分辨率,似乎所有的可能性都是代理商遇到裂缝网络。本文讨论的是在上述储层环境中钻一口直井,而没有钻到天然裂缝系统的情况。正确的缓解措施可以决定是封堵弃井还是投产。所使用的技术是基于在直井上获得的井眼声学反射测量(BARS),以详细了解井眼120英尺外的裂缝网络。将该技术与岩心和高分辨率井眼图像测井相结合,获得了极好的匹配结果,提高了声学预测裂缝通道的可信度。基于这些发现,提出了新的射孔间隔和水力增产措施来优化井的性能。这种应用可以逆转井的退役过程,为老井的再生创造新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Application of Downhole Seismic Imaging in Identifying Natural Fracture Systems; An Integrated Approach Utilizing Core and Borehole Image Data
Producing unconventional reservoirs characterized by low porosities and permeabilities during early stages of exploration and field appraisal can be challenging, especially in high temperature and high pressure (HPHT) downhole conditions. In such reservoirs, the natural fracture network can play a significant role in flowing hydrocarbons, increasing the importance of encountering such network by the boreholes. Consequently, the challenge would be to plan wells through these corridors, which is not always easy. To add to the challenge, well design restrictions dictate, the drilling of only vertical and in minor cases deviated wells. This can reduce the possibility of drilling through sub-vertical fracture sets significantly, and once seismic resolution is considered, it may seem that all odds are agents encountering a fracture network. This article addresses a case where a vertical well is drilled, in the above-mentioned reservoir setting, and missed the natural fracture system. The correct mitigation can make a difference between plugging and abandoning the well or putting it on production. The technique utilized is based on a borehole acoustic reflection survey (BARS) acquired over a vertical well to give a detailed insight on the fracture network 120 ft away from the borehole. Integrating this technique with core and high-resolution borehole image logs rendered an excellent match, increasing the confidence level in the acoustically predicted fracture corridors. Based on these findings new perforation intervals and hydraulic stimulation are proposed to optimize well performance. Such application can reverse the well decommissioning process, opening new opportunities for the rejuvenation of older wells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Size distribution analysis of microstickies treated by enzyme mixtures in papermaking whitewater Evaluating hardness and the S-test Controllable anisotropic properties of wet-laid hydroentangled nonwovens A study of the softness of household tissues using a tissue softness analyzer and hand-felt panels A REVIEW OF MULTI HOMING AND ITS ASSOCIATED RESEARCH AREAS ALONG WITH INTERNET OF THINGS (IOT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1