C

Hans Jörg Schrötter
{"title":"C","authors":"Hans Jörg Schrötter","doi":"10.5771/9783748908722-98","DOIUrl":null,"url":null,"abstract":"In a paper by Bárta et al., the authors addressed by means of high-resolution MHD simulations some open questions on the CSHKP scenario of solar flares. In particular, they focused on the problem of energy transfer from large to small scales in the decaying flare current sheet (CS). Their calculations suggest that magnetic flux ropes (plasmoids) are formed in a full range of scales by a cascade of tearing and coalescence processes. Consequently, the initially thick current layer becomes highly fragmented. Thus, the tearing and coalescence cascade can cause an effective energy transfer across the scales. In this paper, we investigate whether this mechanism actually applies in solar flares. We extend the MHD simulation by deriving model-specific features that can be searched for in observations. The results of the underlying MHD model show that the plasmoid cascade creates a specific hierarchical distribution of non-ideal/acceleration regions embedded in the CS. We therefore focus on the features associated with the fluxes of energetic particles, in particular on the structure and dynamics of emission regions in flare ribbons. We assume that the structure and dynamics of diffusion regions embedded in the CS imprint themselves into the structure and dynamics of flare-ribbon kernels by means of magnetic field mapping. Using the results of the underlying MHD simulation, we derive the expected structure of ribbon emission and extract selected statistical properties of the modeled bright kernels. Comparing the predicted emission and its properties with the observed ones, we obtain a good agreement between the two.","PeriodicalId":84707,"journal":{"name":"Europa-Archiv","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C\",\"authors\":\"Hans Jörg Schrötter\",\"doi\":\"10.5771/9783748908722-98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a paper by Bárta et al., the authors addressed by means of high-resolution MHD simulations some open questions on the CSHKP scenario of solar flares. In particular, they focused on the problem of energy transfer from large to small scales in the decaying flare current sheet (CS). Their calculations suggest that magnetic flux ropes (plasmoids) are formed in a full range of scales by a cascade of tearing and coalescence processes. Consequently, the initially thick current layer becomes highly fragmented. Thus, the tearing and coalescence cascade can cause an effective energy transfer across the scales. In this paper, we investigate whether this mechanism actually applies in solar flares. We extend the MHD simulation by deriving model-specific features that can be searched for in observations. The results of the underlying MHD model show that the plasmoid cascade creates a specific hierarchical distribution of non-ideal/acceleration regions embedded in the CS. We therefore focus on the features associated with the fluxes of energetic particles, in particular on the structure and dynamics of emission regions in flare ribbons. We assume that the structure and dynamics of diffusion regions embedded in the CS imprint themselves into the structure and dynamics of flare-ribbon kernels by means of magnetic field mapping. Using the results of the underlying MHD simulation, we derive the expected structure of ribbon emission and extract selected statistical properties of the modeled bright kernels. Comparing the predicted emission and its properties with the observed ones, we obtain a good agreement between the two.\",\"PeriodicalId\":84707,\"journal\":{\"name\":\"Europa-Archiv\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Europa-Archiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5771/9783748908722-98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europa-Archiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5771/9783748908722-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Bárta等人的一篇论文中,作者通过高分辨率MHD模拟解决了关于太阳耀斑CSHKP情景的一些悬而未决的问题。他们特别关注了衰变耀斑电流片(CS)中能量从大尺度到小尺度的转移问题。他们的计算表明,磁通量绳(等离子体)是通过一连串的撕裂和聚结过程在整个尺度上形成的。因此,最初厚的电流层变得高度破碎。因此,撕裂和聚结级联可以引起有效的跨尺度能量传递。在本文中,我们研究了这一机制是否真的适用于太阳耀斑。我们通过推导可在观测中搜索的模型特定特征来扩展MHD模拟。基础MHD模型的结果表明,等离子体级联创建了嵌入在CS中的非理想/加速区域的特定分层分布。因此,我们将重点放在高能粒子通量的相关特征上,特别是耀斑带中发射区的结构和动力学。我们假设,通过磁场映射,CS中嵌入的扩散区域的结构和动力学将其自身印记到耀斑带核的结构和动力学中。利用底层MHD模拟的结果,我们推导了条带发射的预期结构,并提取了模型亮核的选择统计特性。通过与观测值的比较,我们得到了两者很好的吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C
In a paper by Bárta et al., the authors addressed by means of high-resolution MHD simulations some open questions on the CSHKP scenario of solar flares. In particular, they focused on the problem of energy transfer from large to small scales in the decaying flare current sheet (CS). Their calculations suggest that magnetic flux ropes (plasmoids) are formed in a full range of scales by a cascade of tearing and coalescence processes. Consequently, the initially thick current layer becomes highly fragmented. Thus, the tearing and coalescence cascade can cause an effective energy transfer across the scales. In this paper, we investigate whether this mechanism actually applies in solar flares. We extend the MHD simulation by deriving model-specific features that can be searched for in observations. The results of the underlying MHD model show that the plasmoid cascade creates a specific hierarchical distribution of non-ideal/acceleration regions embedded in the CS. We therefore focus on the features associated with the fluxes of energetic particles, in particular on the structure and dynamics of emission regions in flare ribbons. We assume that the structure and dynamics of diffusion regions embedded in the CS imprint themselves into the structure and dynamics of flare-ribbon kernels by means of magnetic field mapping. Using the results of the underlying MHD simulation, we derive the expected structure of ribbon emission and extract selected statistical properties of the modeled bright kernels. Comparing the predicted emission and its properties with the observed ones, we obtain a good agreement between the two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
V E M A Anhang
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1