相形成与球团结构之间的关系与真菌固定化研究作为商业基质培养/种植材料

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2022-09-30 DOI:10.55713/jmmm.v32i3.1268
R. Sumang, R. Kodsueb, Narathip Vitayakorn, Ruangwut Chutima
{"title":"相形成与球团结构之间的关系与真菌固定化研究作为商业基质培养/种植材料","authors":"R. Sumang, R. Kodsueb, Narathip Vitayakorn, Ruangwut Chutima","doi":"10.55713/jmmm.v32i3.1268","DOIUrl":null,"url":null,"abstract":"Calcined clay pellets are popular planting material for those who love to grow plants in pots. The calcined clay pellets consist of clay (C), phosphate rock (PR), and rice husk ash (RHA). [(1-x)(50C–50PR)-xRHA], x(RHA) = 0, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, and 0.65 wt% were prepared by a conventional solid-state reaction method. The samples were made into a spherical shape with a diameter of 10 mm and fired at 600℃ to 1000℃. The effect of x contents on phase formation, microstructure, and chemical properties of [(1-x)(50C–50PR)-xRHA] was studied. X-ray diffraction revealed the typical assemblages with quartz, illite, and kaolinite in all the samples. SEM images of samples showed irregular packing and a highly porous microstructure. The addition of x(RHA) contents results in porous microstructure in all the samples. The surface area and pore volume of samples increased from 8.83 m2·g-1 to 14.71 m2·g-1 and 0.938 cm3·g-1 to 0.942 cm3·g-1, respectively, with the increase of x(RHA). The density of the samples slightly decreased from 2.45±0.06 g·cm-3 to 1.94±0.05 g·cm-3, with an increase in x(RHA) contents. The capability of calcined clay pellets to immobilize plant growth-promoting fungi was then studied. The results showed that orchid endophytes, as plant growth-promoting fungi, grow well on the calcined clay pellets saturated with potato dextrose broth (PDB). Besides, all fungi can live on calcined clay pellets and stay viable for at least 35 days after inoculation. These results suggested that the calcined clay pellets could serve as planting material that enhances plant growth (via its nutrients and growth-promoting fungi) simultaneously.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"54 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The correlation between phase formation and the structure of the pellets with the fungal immobilization study as a commercial substrate culture/planting material\",\"authors\":\"R. Sumang, R. Kodsueb, Narathip Vitayakorn, Ruangwut Chutima\",\"doi\":\"10.55713/jmmm.v32i3.1268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calcined clay pellets are popular planting material for those who love to grow plants in pots. The calcined clay pellets consist of clay (C), phosphate rock (PR), and rice husk ash (RHA). [(1-x)(50C–50PR)-xRHA], x(RHA) = 0, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, and 0.65 wt% were prepared by a conventional solid-state reaction method. The samples were made into a spherical shape with a diameter of 10 mm and fired at 600℃ to 1000℃. The effect of x contents on phase formation, microstructure, and chemical properties of [(1-x)(50C–50PR)-xRHA] was studied. X-ray diffraction revealed the typical assemblages with quartz, illite, and kaolinite in all the samples. SEM images of samples showed irregular packing and a highly porous microstructure. The addition of x(RHA) contents results in porous microstructure in all the samples. The surface area and pore volume of samples increased from 8.83 m2·g-1 to 14.71 m2·g-1 and 0.938 cm3·g-1 to 0.942 cm3·g-1, respectively, with the increase of x(RHA). The density of the samples slightly decreased from 2.45±0.06 g·cm-3 to 1.94±0.05 g·cm-3, with an increase in x(RHA) contents. The capability of calcined clay pellets to immobilize plant growth-promoting fungi was then studied. The results showed that orchid endophytes, as plant growth-promoting fungi, grow well on the calcined clay pellets saturated with potato dextrose broth (PDB). Besides, all fungi can live on calcined clay pellets and stay viable for at least 35 days after inoculation. These results suggested that the calcined clay pellets could serve as planting material that enhances plant growth (via its nutrients and growth-promoting fungi) simultaneously.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v32i3.1268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v32i3.1268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于那些喜欢在花盆里种植植物的人来说,煅烧的粘土颗粒是很受欢迎的种植材料。煅烧的粘土球团由粘土(C)、磷矿(PR)和稻壳灰(RHA)组成。[(1-x)(50C-50PR)-xRHA], x(RHA) = 0、0.25、0.30、0.35、0.40、0.45、0.50、0.55、0.60、0.65 wt%,采用常规固相反应法制备。将样品制成直径为10mm的球形,在600 ~ 1000℃下烧制。研究了x含量对[(1-x)(50C-50PR)-xRHA]相形成、微观结构和化学性能的影响。x射线衍射结果显示,所有样品均具有典型的石英、伊利石和高岭石组合。样品的SEM图像显示出不规则的堆积和高度多孔的微观结构。x(RHA)含量的加入导致了所有样品的多孔微观结构。随着x(RHA)的增加,样品的比表面积和孔体积分别从8.83 m2·g-1增加到14.71 m2·g-1和0.938 cm3·g-1增加到0.942 cm3·g-1。随着x(RHA)含量的增加,样品的密度从2.45±0.06 g·cm-3略微下降到1.94±0.05 g·cm-3。研究了煅烧粘土球团对植物促生真菌的固定化能力。结果表明,兰花内生真菌作为植物促生真菌,在马铃薯葡萄糖肉汤(PDB)饱和的煅烧粘土球上生长良好。此外,所有真菌都能在煅烧的粘土球上存活,接种后至少能存活35天。这些结果表明,煅烧粘土颗粒可以作为促进植物生长的种植材料(通过其营养成分和促生长真菌)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The correlation between phase formation and the structure of the pellets with the fungal immobilization study as a commercial substrate culture/planting material
Calcined clay pellets are popular planting material for those who love to grow plants in pots. The calcined clay pellets consist of clay (C), phosphate rock (PR), and rice husk ash (RHA). [(1-x)(50C–50PR)-xRHA], x(RHA) = 0, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, and 0.65 wt% were prepared by a conventional solid-state reaction method. The samples were made into a spherical shape with a diameter of 10 mm and fired at 600℃ to 1000℃. The effect of x contents on phase formation, microstructure, and chemical properties of [(1-x)(50C–50PR)-xRHA] was studied. X-ray diffraction revealed the typical assemblages with quartz, illite, and kaolinite in all the samples. SEM images of samples showed irregular packing and a highly porous microstructure. The addition of x(RHA) contents results in porous microstructure in all the samples. The surface area and pore volume of samples increased from 8.83 m2·g-1 to 14.71 m2·g-1 and 0.938 cm3·g-1 to 0.942 cm3·g-1, respectively, with the increase of x(RHA). The density of the samples slightly decreased from 2.45±0.06 g·cm-3 to 1.94±0.05 g·cm-3, with an increase in x(RHA) contents. The capability of calcined clay pellets to immobilize plant growth-promoting fungi was then studied. The results showed that orchid endophytes, as plant growth-promoting fungi, grow well on the calcined clay pellets saturated with potato dextrose broth (PDB). Besides, all fungi can live on calcined clay pellets and stay viable for at least 35 days after inoculation. These results suggested that the calcined clay pellets could serve as planting material that enhances plant growth (via its nutrients and growth-promoting fungi) simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1