考虑溶解气体分析的油浸式电力变压器故障诊断分类方法

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC EMITTER-International Journal of Engineering Technology Pub Date : 2022-12-16 DOI:10.24003/emitter.v10i2.702
Mauridhi Hery Purnomo, Rosmaliati, Bernandus Anggo Seno Aji, Isa Hafidz, Ardyono Priyadi
{"title":"考虑溶解气体分析的油浸式电力变压器故障诊断分类方法","authors":"Mauridhi Hery Purnomo, Rosmaliati, Bernandus Anggo Seno Aji, Isa Hafidz, Ardyono Priyadi","doi":"10.24003/emitter.v10i2.702","DOIUrl":null,"url":null,"abstract":"Fault detection in the incipient stage is necessary to avoid hazardous operating conditions and reduce outage rates in transformers. Fault-detected dissolved gas analysis is widely used to detect incipient faults in oil-immersed transformers. This paper proposes fault diagnosis transformers using an artificial neural network based on classification techniques. Data on the condition of transformer oil is assessed for dissolved gas analysis to measure the dissolved gas concentration in the transformer oil. This type of disturbance can affect the gas concentration in the transformer oil. Fault diagnosis is implemented, and fault reference is provided. The result of the NN method is more accurate than the Tree and Random Forest method, with CA and AUC values 0.800 and 0.913. This classification approach is expected to help fault diagnostics in power transformers.","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification Method in Fault Diagnosis of Oil-Immersed Power Transformers by Considering Dissolved Gas Analysis\",\"authors\":\"Mauridhi Hery Purnomo, Rosmaliati, Bernandus Anggo Seno Aji, Isa Hafidz, Ardyono Priyadi\",\"doi\":\"10.24003/emitter.v10i2.702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault detection in the incipient stage is necessary to avoid hazardous operating conditions and reduce outage rates in transformers. Fault-detected dissolved gas analysis is widely used to detect incipient faults in oil-immersed transformers. This paper proposes fault diagnosis transformers using an artificial neural network based on classification techniques. Data on the condition of transformer oil is assessed for dissolved gas analysis to measure the dissolved gas concentration in the transformer oil. This type of disturbance can affect the gas concentration in the transformer oil. Fault diagnosis is implemented, and fault reference is provided. The result of the NN method is more accurate than the Tree and Random Forest method, with CA and AUC values 0.800 and 0.913. This classification approach is expected to help fault diagnostics in power transformers.\",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24003/emitter.v10i2.702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24003/emitter.v10i2.702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在早期阶段进行故障检测是避免危险运行条件和降低变压器停电率的必要条件。故障检测溶解气体分析被广泛应用于油浸变压器的早期故障检测。本文提出了一种基于分类技术的人工神经网络变压器故障诊断方法。利用变压器油状态数据进行溶解气体分析,测量变压器油中溶解气体的浓度。这种扰动会影响变压器油中的气体浓度。进行故障诊断,并提供故障参考。NN方法的CA和AUC值分别为0.800和0.913,比Tree和Random Forest方法更准确。这种分类方法有望帮助电力变压器的故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification Method in Fault Diagnosis of Oil-Immersed Power Transformers by Considering Dissolved Gas Analysis
Fault detection in the incipient stage is necessary to avoid hazardous operating conditions and reduce outage rates in transformers. Fault-detected dissolved gas analysis is widely used to detect incipient faults in oil-immersed transformers. This paper proposes fault diagnosis transformers using an artificial neural network based on classification techniques. Data on the condition of transformer oil is assessed for dissolved gas analysis to measure the dissolved gas concentration in the transformer oil. This type of disturbance can affect the gas concentration in the transformer oil. Fault diagnosis is implemented, and fault reference is provided. The result of the NN method is more accurate than the Tree and Random Forest method, with CA and AUC values 0.800 and 0.913. This classification approach is expected to help fault diagnostics in power transformers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
Hardware Trojan Detection and Mitigation in NoC using Key authentication and Obfuscation Techniques Estimation of Confidence in the Dialogue based on Eye Gaze and Head Movement Information Experimental Study of Hydroformed Al6061T4 Elliptical Tube Samples under Different Internal Pressures Numerical Study of a Wind Turbine Blade Modification Using 30° Angle Winglet on Clark Y Foil 3D Visualization for Lung Surface Images of Covid-19 Patients based on U-Net CNN Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1