{"title":"基于FBMC/ oqam的物联网网络信道测量与噪声估计","authors":"Jun Sun, X. Mu, Dejin Kong","doi":"10.1155/2022/6518066","DOIUrl":null,"url":null,"abstract":"Channel measurement plays an important role in the emerging 5G-enabled Internet of Things (IoT) networks, which reflects the channel quality and link reliability. In this paper, we address the channel measurement for link reliability evaluation in filter-bank multicarrier with offset quadrature amplitude modulation- (FBMC/OQAM-) based IoT network, which is considered as a promising technique for future wireless communications. However, resulting from the imaginary interference and the noise correlation among subcarriers in FBMC/OQAM, the existing frequency correlation method cannot be directly applied in the FBMC/OQAM-based IoT network. In this study, the concept of the block repetition is applied in FBMC/OQAM. It is demonstrated that the noises among subcarriers are independent by the block repetition and linear combination, instead of correlated. On this basis, the classical frequency correlation method can be applied to achieve the channel measurement. Then, we also propose an advanced frequency correlation method to improve the accuracy of the channel measurement, by assuming channel frequency responses to be quasi-invariant for several successive subcarriers. Simulations are conducted to validate the proposed schemes.","PeriodicalId":23995,"journal":{"name":"Wirel. Commun. Mob. Comput.","volume":"43 1","pages":"6518066:1-6518066:12"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Measurement and Noise Estimation in FBMC/OQAM-Based IoT Networks\",\"authors\":\"Jun Sun, X. Mu, Dejin Kong\",\"doi\":\"10.1155/2022/6518066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel measurement plays an important role in the emerging 5G-enabled Internet of Things (IoT) networks, which reflects the channel quality and link reliability. In this paper, we address the channel measurement for link reliability evaluation in filter-bank multicarrier with offset quadrature amplitude modulation- (FBMC/OQAM-) based IoT network, which is considered as a promising technique for future wireless communications. However, resulting from the imaginary interference and the noise correlation among subcarriers in FBMC/OQAM, the existing frequency correlation method cannot be directly applied in the FBMC/OQAM-based IoT network. In this study, the concept of the block repetition is applied in FBMC/OQAM. It is demonstrated that the noises among subcarriers are independent by the block repetition and linear combination, instead of correlated. On this basis, the classical frequency correlation method can be applied to achieve the channel measurement. Then, we also propose an advanced frequency correlation method to improve the accuracy of the channel measurement, by assuming channel frequency responses to be quasi-invariant for several successive subcarriers. Simulations are conducted to validate the proposed schemes.\",\"PeriodicalId\":23995,\"journal\":{\"name\":\"Wirel. Commun. Mob. Comput.\",\"volume\":\"43 1\",\"pages\":\"6518066:1-6518066:12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wirel. Commun. Mob. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6518066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Commun. Mob. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6518066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Channel Measurement and Noise Estimation in FBMC/OQAM-Based IoT Networks
Channel measurement plays an important role in the emerging 5G-enabled Internet of Things (IoT) networks, which reflects the channel quality and link reliability. In this paper, we address the channel measurement for link reliability evaluation in filter-bank multicarrier with offset quadrature amplitude modulation- (FBMC/OQAM-) based IoT network, which is considered as a promising technique for future wireless communications. However, resulting from the imaginary interference and the noise correlation among subcarriers in FBMC/OQAM, the existing frequency correlation method cannot be directly applied in the FBMC/OQAM-based IoT network. In this study, the concept of the block repetition is applied in FBMC/OQAM. It is demonstrated that the noises among subcarriers are independent by the block repetition and linear combination, instead of correlated. On this basis, the classical frequency correlation method can be applied to achieve the channel measurement. Then, we also propose an advanced frequency correlation method to improve the accuracy of the channel measurement, by assuming channel frequency responses to be quasi-invariant for several successive subcarriers. Simulations are conducted to validate the proposed schemes.