si-al-o-n陶瓷单相的合成

護 三友, 信行 倉元, 正幸 堤, 弘茂 鈴木
{"title":"si-al-o-n陶瓷单相的合成","authors":"護 三友, 信行 倉元, 正幸 堤, 弘茂 鈴木","doi":"10.2109/JCERSJ1950.86.999_526","DOIUrl":null,"url":null,"abstract":"(1) “Balanced” powder mixture of Si3N4, AlN and Al2O3 for sialon (Si6-zAlzOzN8-z with z=1, 2, 3 or 4) was hot pressed at 1750°C for 1h under 200kg/cm2. The densification was incomplete in a sialon with z=1. Other sialons were pore free.(2) The reactions included in the process of β-sialon formation were inferred to be, (a) the formation of 15 R-sialon, x-phase and β-sialon with z=2.3-2.5 at low temperature (equations (2) and (3)), (b) steep densification at higher temperature than 1600°C by “transient liquid phase sintering” with x-phase as a liquid, (c) the final step to approach z value of β-sialon into predicted one (equations (5) and (6)).(3) Density measurement and chemical etching with diluted HF+HNO3 of fracture surface of sialon revealed that there was unreacted materials in sialons with z=3 and 4. A single phase and fully dense sialon was obtained in the composition z=2 with very small amount of grain boundary phase, if any.(4) Small amount of excess oxide (about 3 wt%) in a sialon with z=2, which existed as grain boundary phase, was detected by chemical etching.","PeriodicalId":17274,"journal":{"name":"Journal of the Ceramic Association, Japan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1978-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Si-Al-O-Nセラミックス単相の合成\",\"authors\":\"護 三友, 信行 倉元, 正幸 堤, 弘茂 鈴木\",\"doi\":\"10.2109/JCERSJ1950.86.999_526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(1) “Balanced” powder mixture of Si3N4, AlN and Al2O3 for sialon (Si6-zAlzOzN8-z with z=1, 2, 3 or 4) was hot pressed at 1750°C for 1h under 200kg/cm2. The densification was incomplete in a sialon with z=1. Other sialons were pore free.(2) The reactions included in the process of β-sialon formation were inferred to be, (a) the formation of 15 R-sialon, x-phase and β-sialon with z=2.3-2.5 at low temperature (equations (2) and (3)), (b) steep densification at higher temperature than 1600°C by “transient liquid phase sintering” with x-phase as a liquid, (c) the final step to approach z value of β-sialon into predicted one (equations (5) and (6)).(3) Density measurement and chemical etching with diluted HF+HNO3 of fracture surface of sialon revealed that there was unreacted materials in sialons with z=3 and 4. A single phase and fully dense sialon was obtained in the composition z=2 with very small amount of grain boundary phase, if any.(4) Small amount of excess oxide (about 3 wt%) in a sialon with z=2, which existed as grain boundary phase, was detected by chemical etching.\",\"PeriodicalId\":17274,\"journal\":{\"name\":\"Journal of the Ceramic Association, Japan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Ceramic Association, Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2109/JCERSJ1950.86.999_526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ceramic Association, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2109/JCERSJ1950.86.999_526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

(1) Si3N4、AlN和Al2O3的“平衡”粉末混合物用于sialon (Si6-zAlzOzN8-z, z= 1,2,3或4),温度为1750℃,温度为200kg/cm2,热压1h。z=1时,莎龙致密化不完全。(2) β-sialon形成过程中包含的反应可以推断为:(a)在低温下形成15 R-sialon, x相和z=2.3-2.5的β-sialon(式(2)和(3)),(b)在高于1600℃的温度下以x相为液体的“瞬态液相烧结”急剧致密化。(c)将β-sialon的z值逼近到预测值的最后一步(式(5)和(6))。(3)密度测量和稀释HF+HNO3对sialon断裂面的化学蚀刻表明,z=3和4的sialon中存在未反应物质。(4)化学腐蚀法检测到z=2组分中存在少量过量氧化物(约3 wt%),以晶界相形式存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Si-Al-O-Nセラミックス単相の合成
(1) “Balanced” powder mixture of Si3N4, AlN and Al2O3 for sialon (Si6-zAlzOzN8-z with z=1, 2, 3 or 4) was hot pressed at 1750°C for 1h under 200kg/cm2. The densification was incomplete in a sialon with z=1. Other sialons were pore free.(2) The reactions included in the process of β-sialon formation were inferred to be, (a) the formation of 15 R-sialon, x-phase and β-sialon with z=2.3-2.5 at low temperature (equations (2) and (3)), (b) steep densification at higher temperature than 1600°C by “transient liquid phase sintering” with x-phase as a liquid, (c) the final step to approach z value of β-sialon into predicted one (equations (5) and (6)).(3) Density measurement and chemical etching with diluted HF+HNO3 of fracture surface of sialon revealed that there was unreacted materials in sialons with z=3 and 4. A single phase and fully dense sialon was obtained in the composition z=2 with very small amount of grain boundary phase, if any.(4) Small amount of excess oxide (about 3 wt%) in a sialon with z=2, which existed as grain boundary phase, was detected by chemical etching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Carbon Monoxide on the Sintering of SiC Whisker-Zirconia Composite Preparation and Properties of LiTaO3 Thin Films by Dipping Method Distribution of Impregnated Component and Nonuniformity of Colloidal Silica in Porous Glass Synthesis of High-Purity ZrF4 by Chemical Vapour Deposition Si//3N//4 FORMATION IN THE CARBOTHERMAL REDUCTION PROCESS OF A MAGADIITE-POLYACRYLONITRILE INTERCALATION COMPOUND.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1