基于多维、多层次时间数据的多模态深度学习可以增强对耐多药肺结核患者的预后预测

Zhen-Hui Lu, Ming Yang, Chen-Hui Pan, Pei-Yong Zheng, Shun-Xian Zhang
{"title":"基于多维、多层次时间数据的多模态深度学习可以增强对耐多药肺结核患者的预后预测","authors":"Zhen-Hui Lu,&nbsp;Ming Yang,&nbsp;Chen-Hui Pan,&nbsp;Pei-Yong Zheng,&nbsp;Shun-Xian Zhang","doi":"10.1016/j.soh.2022.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients.</p></div>","PeriodicalId":101146,"journal":{"name":"Science in One Health","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294970432200004X/pdfft?md5=77ca8753e41e598d4df68cd3421031e9&pid=1-s2.0-S294970432200004X-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Multi-modal deep learning based on multi-dimensional and multi-level temporal data can enhance the prognostic prediction for multi-drug resistant pulmonary tuberculosis patients\",\"authors\":\"Zhen-Hui Lu,&nbsp;Ming Yang,&nbsp;Chen-Hui Pan,&nbsp;Pei-Yong Zheng,&nbsp;Shun-Xian Zhang\",\"doi\":\"10.1016/j.soh.2022.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients.</p></div>\",\"PeriodicalId\":101146,\"journal\":{\"name\":\"Science in One Health\",\"volume\":\"1 \",\"pages\":\"Article 100004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294970432200004X/pdfft?md5=77ca8753e41e598d4df68cd3421031e9&pid=1-s2.0-S294970432200004X-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in One Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294970432200004X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in One Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294970432200004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

尽管出现了新的诊断方法、药物和治疗方案,耐多药肺结核(MDR-PTB)仍然是全球健康威胁。该病治疗周期长,治愈率低,疾病负担重。人口统计学、疾病特征、肺部影像学、生物标志物、治疗计划和药物依从性等因素与耐多药肺结核的预后相关。然而,到目前为止,大多数现有研究都集中在通过静态单尺度或低维信息预测治疗结果。因此,基于多维动态数据的多模态深度学习可以更深入地了解个性化治疗方案,从而帮助患者的临床管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-modal deep learning based on multi-dimensional and multi-level temporal data can enhance the prognostic prediction for multi-drug resistant pulmonary tuberculosis patients

Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modern technologies and solutions to enhance surveillance and response systems for emerging zoonotic diseases Dietary exposure assessment of perchlorate and chlorate in infant formulas marketed in Shanghai, China Irrational use of colistin sulfate in poultry and domestic animals in Nepal-an emerging public health crisis How far has the globe gone in achieving One Health? Current evidence and policy implications based on global One Health index Microbiome One Health model for a healthy ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1