Yoshio Kobayashi, T. Shirochi, Y. Yasuda, T. Morita
{"title":"水溶液中还原铜离子制备金属铜纳米粒子及其金属-金属键合性能","authors":"Yoshio Kobayashi, T. Shirochi, Y. Yasuda, T. Morita","doi":"10.5281/ZENODO.1088612","DOIUrl":null,"url":null,"abstract":"— This paper describes a method for preparing metallic Cu nanoparticles in aqueous solution, and a metal-metal bonding technique using the Cu particles.Preparation of the Cu particle colloid solution was performed in water at room temperature in air using a copper source (0.01 M Cu(NO 3 ) 2 ), a reducing reagent (0.2 - 1.0 M hydrazine), and stabilizers (0.5×10 -3 M citric acid and 5.0×10 -3 M cetyltrimethylammonium bromide). The metallic Cu nanoparticles with sizes of ca. 60nm were prepared at all the hydrazine concentrations examined. A stage and a plate of metallic Cu were successfully bonded under annealing at 400 o C and pressurizing at 1.2 MPa for 5min in H 2 gas with help of the metallic Cu particles. A shear strength required for separating the bonded Cu substrates reached the maximum value at a hydrazine concentration of 0.8M, and it decreased beyond the concentration. Consequently, the largest shear strength of 22.9 MPa was achieved at the 0.8 M hydrazine concentration.","PeriodicalId":23701,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering","volume":"1 1","pages":"769-772"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Preparation of Metallic Copper Nanoparticles by Reduction of Copper Ions in Aqueous Solution and Their Metal-Metal Bonding Properties\",\"authors\":\"Yoshio Kobayashi, T. Shirochi, Y. Yasuda, T. Morita\",\"doi\":\"10.5281/ZENODO.1088612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— This paper describes a method for preparing metallic Cu nanoparticles in aqueous solution, and a metal-metal bonding technique using the Cu particles.Preparation of the Cu particle colloid solution was performed in water at room temperature in air using a copper source (0.01 M Cu(NO 3 ) 2 ), a reducing reagent (0.2 - 1.0 M hydrazine), and stabilizers (0.5×10 -3 M citric acid and 5.0×10 -3 M cetyltrimethylammonium bromide). The metallic Cu nanoparticles with sizes of ca. 60nm were prepared at all the hydrazine concentrations examined. A stage and a plate of metallic Cu were successfully bonded under annealing at 400 o C and pressurizing at 1.2 MPa for 5min in H 2 gas with help of the metallic Cu particles. A shear strength required for separating the bonded Cu substrates reached the maximum value at a hydrazine concentration of 0.8M, and it decreased beyond the concentration. Consequently, the largest shear strength of 22.9 MPa was achieved at the 0.8 M hydrazine concentration.\",\"PeriodicalId\":23701,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering\",\"volume\":\"1 1\",\"pages\":\"769-772\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1088612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1088612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of Metallic Copper Nanoparticles by Reduction of Copper Ions in Aqueous Solution and Their Metal-Metal Bonding Properties
— This paper describes a method for preparing metallic Cu nanoparticles in aqueous solution, and a metal-metal bonding technique using the Cu particles.Preparation of the Cu particle colloid solution was performed in water at room temperature in air using a copper source (0.01 M Cu(NO 3 ) 2 ), a reducing reagent (0.2 - 1.0 M hydrazine), and stabilizers (0.5×10 -3 M citric acid and 5.0×10 -3 M cetyltrimethylammonium bromide). The metallic Cu nanoparticles with sizes of ca. 60nm were prepared at all the hydrazine concentrations examined. A stage and a plate of metallic Cu were successfully bonded under annealing at 400 o C and pressurizing at 1.2 MPa for 5min in H 2 gas with help of the metallic Cu particles. A shear strength required for separating the bonded Cu substrates reached the maximum value at a hydrazine concentration of 0.8M, and it decreased beyond the concentration. Consequently, the largest shear strength of 22.9 MPa was achieved at the 0.8 M hydrazine concentration.