基于动态因果模型的内隐和外显社会信念序列学习中小脑-大脑的有效连接。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-01-09 DOI:10.1093/scan/nsac044
Qianying Ma, Min Pu, Naem Haihambo, Kris Baetens, Elien Heleven, Natacha Deroost, Chris Baeken, Frank Van Overwalle
{"title":"基于动态因果模型的内隐和外显社会信念序列学习中小脑-大脑的有效连接。","authors":"Qianying Ma,&nbsp;Min Pu,&nbsp;Naem Haihambo,&nbsp;Kris Baetens,&nbsp;Elien Heleven,&nbsp;Natacha Deroost,&nbsp;Chris Baeken,&nbsp;Frank Van Overwalle","doi":"10.1093/scan/nsac044","DOIUrl":null,"url":null,"abstract":"<p><p>To study social sequence learning, earlier functional magnetic resonance imaging (fMRI) studies investigated the neural correlates of a novel Belief Serial Reaction Time task in which participants learned sequences of beliefs held by protagonists. The results demonstrated the involvement of the mentalizing network in the posterior cerebellum and cerebral areas (e.g. temporoparietal junction, precuneus and temporal pole) during implicit and explicit social sequence learning. However, little is known about the neural functional interaction between these areas during this task. Dynamic causal modeling analyses for both implicit and explicit belief sequence learning revealed that the posterior cerebellar Crus I & II were effectively connected to cerebral mentalizing areas, especially the bilateral temporoparietal junction, via closed loops (i.e. bidirectional functional connections that initiate and terminate at the same cerebellar and cerebral areas). There were more closed loops during implicit than explicit learning, which may indicate that the posterior cerebellum may be more involved in implicitly learning sequential social information. Our analysis supports the general view that the posterior cerebellum receives incoming signals from critical mentalizing areas in the cerebrum to identify sequences of social actions and then sends signals back to the same cortical mentalizing areas to better prepare for others' social actions and one's responses to it.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951265/pdf/","citationCount":"4","resultStr":"{\"title\":\"Effective cerebello-cerebral connectivity during implicit and explicit social belief sequence learning using dynamic causal modeling.\",\"authors\":\"Qianying Ma,&nbsp;Min Pu,&nbsp;Naem Haihambo,&nbsp;Kris Baetens,&nbsp;Elien Heleven,&nbsp;Natacha Deroost,&nbsp;Chris Baeken,&nbsp;Frank Van Overwalle\",\"doi\":\"10.1093/scan/nsac044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To study social sequence learning, earlier functional magnetic resonance imaging (fMRI) studies investigated the neural correlates of a novel Belief Serial Reaction Time task in which participants learned sequences of beliefs held by protagonists. The results demonstrated the involvement of the mentalizing network in the posterior cerebellum and cerebral areas (e.g. temporoparietal junction, precuneus and temporal pole) during implicit and explicit social sequence learning. However, little is known about the neural functional interaction between these areas during this task. Dynamic causal modeling analyses for both implicit and explicit belief sequence learning revealed that the posterior cerebellar Crus I & II were effectively connected to cerebral mentalizing areas, especially the bilateral temporoparietal junction, via closed loops (i.e. bidirectional functional connections that initiate and terminate at the same cerebellar and cerebral areas). There were more closed loops during implicit than explicit learning, which may indicate that the posterior cerebellum may be more involved in implicitly learning sequential social information. Our analysis supports the general view that the posterior cerebellum receives incoming signals from critical mentalizing areas in the cerebrum to identify sequences of social actions and then sends signals back to the same cortical mentalizing areas to better prepare for others' social actions and one's responses to it.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951265/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/scan/nsac044\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/scan/nsac044","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

为了研究社会序列学习,早期的功能性磁共振成像(fMRI)研究调查了一项新颖的信念序列反应时间任务的神经相关性,在该任务中,参与者学习主角持有的信念序列。结果表明,内隐和外显社会序列学习过程中,小脑后部和大脑区域(如颞顶连接区、楔前叶区和颞极区)的心智化网络都参与其中。然而,在这项任务中,这些区域之间的神经功能相互作用知之甚少。内隐和外显信念序列学习的动态因果模型分析表明,小脑后小腿I和小腿II通过闭环(即在小脑和大脑相同区域启动和终止的双向功能连接)有效地连接到大脑的心智化区域,特别是双侧颞顶连接)。内隐学习过程中的闭环比外显学习过程中的多,这可能表明后小脑内隐学习过程中更多地参与了顺序社会信息的学习。我们的分析支持了一般观点,即小脑后部接收来自大脑关键心智区的输入信号,以识别社会行为的序列,然后将信号发送回相同的皮质心智区,以更好地为他人的社会行为和自己的反应做好准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective cerebello-cerebral connectivity during implicit and explicit social belief sequence learning using dynamic causal modeling.

To study social sequence learning, earlier functional magnetic resonance imaging (fMRI) studies investigated the neural correlates of a novel Belief Serial Reaction Time task in which participants learned sequences of beliefs held by protagonists. The results demonstrated the involvement of the mentalizing network in the posterior cerebellum and cerebral areas (e.g. temporoparietal junction, precuneus and temporal pole) during implicit and explicit social sequence learning. However, little is known about the neural functional interaction between these areas during this task. Dynamic causal modeling analyses for both implicit and explicit belief sequence learning revealed that the posterior cerebellar Crus I & II were effectively connected to cerebral mentalizing areas, especially the bilateral temporoparietal junction, via closed loops (i.e. bidirectional functional connections that initiate and terminate at the same cerebellar and cerebral areas). There were more closed loops during implicit than explicit learning, which may indicate that the posterior cerebellum may be more involved in implicitly learning sequential social information. Our analysis supports the general view that the posterior cerebellum receives incoming signals from critical mentalizing areas in the cerebrum to identify sequences of social actions and then sends signals back to the same cortical mentalizing areas to better prepare for others' social actions and one's responses to it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1