无取向硅钢冷轧变形区总温升计算的简化数学模型

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Metallurgical Research & Technology Pub Date : 2021-12-20 DOI:10.1051/metal/2021095
Guomin Han, Hongbo Li, Yujin Liu, J. Zhang, N. Kong, Zhiyuan Hu, Lei Liu
{"title":"无取向硅钢冷轧变形区总温升计算的简化数学模型","authors":"Guomin Han, Hongbo Li, Yujin Liu, J. Zhang, N. Kong, Zhiyuan Hu, Lei Liu","doi":"10.1051/metal/2021095","DOIUrl":null,"url":null,"abstract":"In tandem cold rolling, the control of the temperature of high-grade non-oriented silicon steel is a difficult problem for its large deformation resistance and the preheating procedure before rolling. And it is complicated to calculate the total temperature rise of rolling deformation zone due to the comprehensive influence of the plastic deformation heat, the friction heat and the contact heat loss. So, to precisely calculate the total temperature rise, firstly, based on the four classical cold rolling force formulas, the initial total temperature rise calculation models are established correspondingly by theoretically analyzing the temperature rise of deformation heat, the temperature rise of friction heat and the temperature drop of contact heat loss; then, the model based on the improved Lian rolling force formula is adopted, which leads to calculated best matching the measured temperature; finally, considering the complex formula calculation of the initial model, based on the influences of different rolling parameters on the total temperature rise, a simplified model for convenient calculation is proposed by the nonlinear regression analysis of the initial model calculation results and main rolling parameters, which is convenient for the actual application by the field technicians.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A simplified mathematical model for total temperature rise calculation in non-oriented silicon steel cold rolling deformation zone\",\"authors\":\"Guomin Han, Hongbo Li, Yujin Liu, J. Zhang, N. Kong, Zhiyuan Hu, Lei Liu\",\"doi\":\"10.1051/metal/2021095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In tandem cold rolling, the control of the temperature of high-grade non-oriented silicon steel is a difficult problem for its large deformation resistance and the preheating procedure before rolling. And it is complicated to calculate the total temperature rise of rolling deformation zone due to the comprehensive influence of the plastic deformation heat, the friction heat and the contact heat loss. So, to precisely calculate the total temperature rise, firstly, based on the four classical cold rolling force formulas, the initial total temperature rise calculation models are established correspondingly by theoretically analyzing the temperature rise of deformation heat, the temperature rise of friction heat and the temperature drop of contact heat loss; then, the model based on the improved Lian rolling force formula is adopted, which leads to calculated best matching the measured temperature; finally, considering the complex formula calculation of the initial model, based on the influences of different rolling parameters on the total temperature rise, a simplified model for convenient calculation is proposed by the nonlinear regression analysis of the initial model calculation results and main rolling parameters, which is convenient for the actual application by the field technicians.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021095\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021095","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

高档无取向硅钢因其抗变形能力大,且轧制前需预热,因此在冷轧连轧过程中,温度的控制是一个难题。由于塑性变形热、摩擦热和接触热损失的综合影响,轧制变形区总温升的计算比较复杂。因此,为了精确计算总温升,首先,在四种经典冷轧力公式的基础上,通过理论分析变形热温升、摩擦热温升和接触热损失温降,建立了相应的初始总温升计算模型;然后,采用基于改进的连轧力公式的模型,使计算结果与实测温度最匹配;最后,考虑到初始模型公式计算复杂,基于不同轧制参数对总温升的影响,通过对初始模型计算结果与主要轧制参数的非线性回归分析,提出了简化模型,便于计算,便于现场技术人员的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simplified mathematical model for total temperature rise calculation in non-oriented silicon steel cold rolling deformation zone
In tandem cold rolling, the control of the temperature of high-grade non-oriented silicon steel is a difficult problem for its large deformation resistance and the preheating procedure before rolling. And it is complicated to calculate the total temperature rise of rolling deformation zone due to the comprehensive influence of the plastic deformation heat, the friction heat and the contact heat loss. So, to precisely calculate the total temperature rise, firstly, based on the four classical cold rolling force formulas, the initial total temperature rise calculation models are established correspondingly by theoretically analyzing the temperature rise of deformation heat, the temperature rise of friction heat and the temperature drop of contact heat loss; then, the model based on the improved Lian rolling force formula is adopted, which leads to calculated best matching the measured temperature; finally, considering the complex formula calculation of the initial model, based on the influences of different rolling parameters on the total temperature rise, a simplified model for convenient calculation is proposed by the nonlinear regression analysis of the initial model calculation results and main rolling parameters, which is convenient for the actual application by the field technicians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
期刊最新文献
Bend forming of aluminum alloy integral panel: a review Kinetic and mechanical properties of boronized AISI 1020 steel with Baybora-2 powder The method of reducing energy consumption in large blast furnace smelting by increasing top pressure Distribution behavior and deportation of arsenic in copper top-blown smelting process Effect of slag properties and non-uniform bottom blowing gas supply mode on fluid flow and mixing behavior in converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1