石墨烯纳米缩窄的应变工程理论

M. Hayashi, H. Yoshioka, H. Tomori, A. Kanda
{"title":"石墨烯纳米缩窄的应变工程理论","authors":"M. Hayashi, H. Yoshioka, H. Tomori, A. Kanda","doi":"10.7566/JPSJ.90.023701","DOIUrl":null,"url":null,"abstract":"Strain engineering is one of the key technologies for using graphene as an electronic device: the strain-induced pseudo-gauge field reflects Dirac electrons, thus opening the so-called conduction gap. Since strain accumulates in constrictions, graphene nanoconstrictions can be a good platform for this technology. On the other hand, in the graphene nanoconstrictions, Fabry-Perot type quantum interference dominates the electrical conduction at low bias voltages. We argue that these two effects have different strain dependence; the pseudo-gauge field contribution is symmetric with respect to positive (tensile) and negative (compressive) strain, whereas the quantum interference is antisymmetric. As a result, a peculiar strain dependence of the conductance appears even at room temperatures.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory of the Strain Engineering of Graphene Nanoconstrictions\",\"authors\":\"M. Hayashi, H. Yoshioka, H. Tomori, A. Kanda\",\"doi\":\"10.7566/JPSJ.90.023701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strain engineering is one of the key technologies for using graphene as an electronic device: the strain-induced pseudo-gauge field reflects Dirac electrons, thus opening the so-called conduction gap. Since strain accumulates in constrictions, graphene nanoconstrictions can be a good platform for this technology. On the other hand, in the graphene nanoconstrictions, Fabry-Perot type quantum interference dominates the electrical conduction at low bias voltages. We argue that these two effects have different strain dependence; the pseudo-gauge field contribution is symmetric with respect to positive (tensile) and negative (compressive) strain, whereas the quantum interference is antisymmetric. As a result, a peculiar strain dependence of the conductance appears even at room temperatures.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7566/JPSJ.90.023701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/JPSJ.90.023701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

应变工程是利用石墨烯作为电子器件的关键技术之一:应变诱导的伪规范场反映狄拉克电子,从而打开所谓的传导间隙。由于应变在收缩中积累,石墨烯纳米收缩可以成为该技术的良好平台。另一方面,在石墨烯纳米结构中,法布里-珀罗型量子干涉在低偏置电压下主导导电。我们认为这两种效应具有不同的应变依赖性;伪规范场的贡献相对于正(拉伸)和负(压缩)应变是对称的,而量子干涉是反对称的。因此,即使在室温下,电导也会出现特殊的应变依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theory of the Strain Engineering of Graphene Nanoconstrictions
Strain engineering is one of the key technologies for using graphene as an electronic device: the strain-induced pseudo-gauge field reflects Dirac electrons, thus opening the so-called conduction gap. Since strain accumulates in constrictions, graphene nanoconstrictions can be a good platform for this technology. On the other hand, in the graphene nanoconstrictions, Fabry-Perot type quantum interference dominates the electrical conduction at low bias voltages. We argue that these two effects have different strain dependence; the pseudo-gauge field contribution is symmetric with respect to positive (tensile) and negative (compressive) strain, whereas the quantum interference is antisymmetric. As a result, a peculiar strain dependence of the conductance appears even at room temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1