Ting Hu , Yin-Xin Zeng , Yi-He Zhang , Yu Du , Wei Han , Hui-Rong Li , Wei Luo
{"title":"以二甲基磺酰丙酸(DMSP)为唯一碳源生长的新型海洋假单胞菌BSw22131的全基因组序列","authors":"Ting Hu , Yin-Xin Zeng , Yi-He Zhang , Yu Du , Wei Han , Hui-Rong Li , Wei Luo","doi":"10.1016/j.margen.2023.101016","DOIUrl":null,"url":null,"abstract":"<div><p>Members of the genus <em>Pseudomonas</em> have been frequently isolated from the marine environment, indicating their ecological role in native habitats. One bacterial strain, <em>Pseudomonas</em> sp. BSw22131, was isolated from seawater in Kongsfjorden, Svalbard. The bacterium can grow with algae-derived dimethylsulfoniopropionate (DMSP) as the sole carbon source. Here, we sequenced the complete genome of strain BSw22131, which contained a single circular chromosome of 5,739,290 (G + C content of 58.23 mol%) without any plasmids. A total of 5362 protein-coding genes, 65 tRNA genes, and 16 rRNA genes were obtained. Genome sequence analysis revealed that strain BSw22131 was not only a potential novel species of the genus <em>Pseudomonas</em> but also different from <em>Pseudomonas</em> sp. DMSP-1 that was isolated from the same habitat and also utilized DMSP as the sole carbon source for growth. The results can be helpful for understanding the catabolism of the genus <em>Pseudomonas</em> in sulfur cycling in the Arctic fjord ecosystem.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"68 ","pages":"Article 101016"},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete genome sequence of one novel marine Pseudomonas sp. BSw22131 growing with dimethylsulfoniopropionate (DMSP) as the sole carbon source\",\"authors\":\"Ting Hu , Yin-Xin Zeng , Yi-He Zhang , Yu Du , Wei Han , Hui-Rong Li , Wei Luo\",\"doi\":\"10.1016/j.margen.2023.101016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Members of the genus <em>Pseudomonas</em> have been frequently isolated from the marine environment, indicating their ecological role in native habitats. One bacterial strain, <em>Pseudomonas</em> sp. BSw22131, was isolated from seawater in Kongsfjorden, Svalbard. The bacterium can grow with algae-derived dimethylsulfoniopropionate (DMSP) as the sole carbon source. Here, we sequenced the complete genome of strain BSw22131, which contained a single circular chromosome of 5,739,290 (G + C content of 58.23 mol%) without any plasmids. A total of 5362 protein-coding genes, 65 tRNA genes, and 16 rRNA genes were obtained. Genome sequence analysis revealed that strain BSw22131 was not only a potential novel species of the genus <em>Pseudomonas</em> but also different from <em>Pseudomonas</em> sp. DMSP-1 that was isolated from the same habitat and also utilized DMSP as the sole carbon source for growth. The results can be helpful for understanding the catabolism of the genus <em>Pseudomonas</em> in sulfur cycling in the Arctic fjord ecosystem.</p></div>\",\"PeriodicalId\":18321,\"journal\":{\"name\":\"Marine genomics\",\"volume\":\"68 \",\"pages\":\"Article 101016\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778723000089\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778723000089","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Complete genome sequence of one novel marine Pseudomonas sp. BSw22131 growing with dimethylsulfoniopropionate (DMSP) as the sole carbon source
Members of the genus Pseudomonas have been frequently isolated from the marine environment, indicating their ecological role in native habitats. One bacterial strain, Pseudomonas sp. BSw22131, was isolated from seawater in Kongsfjorden, Svalbard. The bacterium can grow with algae-derived dimethylsulfoniopropionate (DMSP) as the sole carbon source. Here, we sequenced the complete genome of strain BSw22131, which contained a single circular chromosome of 5,739,290 (G + C content of 58.23 mol%) without any plasmids. A total of 5362 protein-coding genes, 65 tRNA genes, and 16 rRNA genes were obtained. Genome sequence analysis revealed that strain BSw22131 was not only a potential novel species of the genus Pseudomonas but also different from Pseudomonas sp. DMSP-1 that was isolated from the same habitat and also utilized DMSP as the sole carbon source for growth. The results can be helpful for understanding the catabolism of the genus Pseudomonas in sulfur cycling in the Arctic fjord ecosystem.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.