{"title":"海藻酸盐/明胶基质上人视网膜色素上皮细胞的神经分化。","authors":"Hoda Shamsnajafabadi, Zahra-Soheila Soheili, Shahram Samiee, Hamid Ahmadieh, Ehsan Ranaei Pirmardan, Massoud Haghighi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The development of biomaterials provides potent promise for the regeneration of neuroretinal cells in degenerative eye diseases and retinal tissue engineering. Biomimetic three-dimensional (3D) microenvironments and specific growth factors motivate the differentiation of human retinal pigment epithelial (hRPE) cells toward a retinal neural lineage. In this study, we evaluated alginate/gelatin (A/G) as a substrate for the culture of hRPE cells.</p><p><strong>Methods: </strong>hRPE cells were isolated from neonatal human cadaver globes and cultivated on A/G substrate under different culture conditions, including 30% human amniotic fluid (HAF), 10% fetal bovine serum (FBS), and serum-free Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F12). The proliferation of cells in different culture conditions was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and a cell proliferation assay. Immunocytochemistry and real-time PCR were performed to evaluate the effect of the substrate on hRPE cell differentiation.</p><p><strong>Results: </strong>A significant increase in the cell proliferation rate was observed in hRPE cells cultivated on an A/G substrate. Continuous observations demonstrated that hRPE cells formed densely packed, suspended spheroids in DMEM/F12 culture conditions, with dominant transdifferentiation into amacrine cells. Small adherent clusters of hRPE cells in HAF- and FBS-treated cultures represented dedifferentiation toward retinal progenitor cells. These cultures generated amacrine, rod photoreceptors, and bipolar cells.</p><p><strong>Conclusions: </strong>These findings indicated that A/G substrate induced neural retinal cell propagation in cultures and would therefore be promising for RPE-based tissue engineering studies.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"28 ","pages":"412-431"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1c/4e/mv-v28-412.PMC9767845.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural differentiation of human retinal pigment epithelial cells on alginate/gelatin substrate.\",\"authors\":\"Hoda Shamsnajafabadi, Zahra-Soheila Soheili, Shahram Samiee, Hamid Ahmadieh, Ehsan Ranaei Pirmardan, Massoud Haghighi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The development of biomaterials provides potent promise for the regeneration of neuroretinal cells in degenerative eye diseases and retinal tissue engineering. Biomimetic three-dimensional (3D) microenvironments and specific growth factors motivate the differentiation of human retinal pigment epithelial (hRPE) cells toward a retinal neural lineage. In this study, we evaluated alginate/gelatin (A/G) as a substrate for the culture of hRPE cells.</p><p><strong>Methods: </strong>hRPE cells were isolated from neonatal human cadaver globes and cultivated on A/G substrate under different culture conditions, including 30% human amniotic fluid (HAF), 10% fetal bovine serum (FBS), and serum-free Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F12). The proliferation of cells in different culture conditions was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and a cell proliferation assay. Immunocytochemistry and real-time PCR were performed to evaluate the effect of the substrate on hRPE cell differentiation.</p><p><strong>Results: </strong>A significant increase in the cell proliferation rate was observed in hRPE cells cultivated on an A/G substrate. Continuous observations demonstrated that hRPE cells formed densely packed, suspended spheroids in DMEM/F12 culture conditions, with dominant transdifferentiation into amacrine cells. Small adherent clusters of hRPE cells in HAF- and FBS-treated cultures represented dedifferentiation toward retinal progenitor cells. These cultures generated amacrine, rod photoreceptors, and bipolar cells.</p><p><strong>Conclusions: </strong>These findings indicated that A/G substrate induced neural retinal cell propagation in cultures and would therefore be promising for RPE-based tissue engineering studies.</p>\",\"PeriodicalId\":18866,\"journal\":{\"name\":\"Molecular Vision\",\"volume\":\"28 \",\"pages\":\"412-431\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1c/4e/mv-v28-412.PMC9767845.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Neural differentiation of human retinal pigment epithelial cells on alginate/gelatin substrate.
Purpose: The development of biomaterials provides potent promise for the regeneration of neuroretinal cells in degenerative eye diseases and retinal tissue engineering. Biomimetic three-dimensional (3D) microenvironments and specific growth factors motivate the differentiation of human retinal pigment epithelial (hRPE) cells toward a retinal neural lineage. In this study, we evaluated alginate/gelatin (A/G) as a substrate for the culture of hRPE cells.
Methods: hRPE cells were isolated from neonatal human cadaver globes and cultivated on A/G substrate under different culture conditions, including 30% human amniotic fluid (HAF), 10% fetal bovine serum (FBS), and serum-free Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F12). The proliferation of cells in different culture conditions was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and a cell proliferation assay. Immunocytochemistry and real-time PCR were performed to evaluate the effect of the substrate on hRPE cell differentiation.
Results: A significant increase in the cell proliferation rate was observed in hRPE cells cultivated on an A/G substrate. Continuous observations demonstrated that hRPE cells formed densely packed, suspended spheroids in DMEM/F12 culture conditions, with dominant transdifferentiation into amacrine cells. Small adherent clusters of hRPE cells in HAF- and FBS-treated cultures represented dedifferentiation toward retinal progenitor cells. These cultures generated amacrine, rod photoreceptors, and bipolar cells.
Conclusions: These findings indicated that A/G substrate induced neural retinal cell propagation in cultures and would therefore be promising for RPE-based tissue engineering studies.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.