Basel Shbita, Craig A. Knoblock, Weiwei Duan, Yao-Yi Chiang, Johannes H. Uhl, S. Leyk
{"title":"基于矢量化地形图历史图谱的时空知识图谱构建","authors":"Basel Shbita, Craig A. Knoblock, Weiwei Duan, Yao-Yi Chiang, Johannes H. Uhl, S. Leyk","doi":"10.3233/sw-222918","DOIUrl":null,"url":null,"abstract":"Historical maps provide rich information for researchers in many areas, including the social and natural sciences. These maps contain detailed documentation of a wide variety of natural and human-made features and their changes over time, such as changes in transportation networks or the decline of wetlands or forest areas. Analyzing changes over time in such maps can be labor-intensive for a scientist, even after the geographic features have been digitized and converted to a vector format. Knowledge Graphs (KGs) are the appropriate representations to store and link such data and support semantic and temporal querying to facilitate change analysis. KGs combine expressivity, interoperability, and standardization in the Semantic Web stack, thus providing a strong foundation for querying and analysis. In this paper, we present an automatic approach to convert vector geographic features extracted from multiple historical maps into contextualized spatio-temporal KGs. The resulting graphs can be easily queried and visualized to understand the changes in different regions over time. We evaluate our technique on railroad networks and wetland areas extracted from the United States Geological Survey (USGS) historical topographic maps for several regions over multiple map sheets and editions. We also demonstrate how the automatically constructed linked data (i.e., KGs) enable effective querying and visualization of changes over different points in time.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"3 1","pages":"527-549"},"PeriodicalIF":3.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Building spatio-temporal knowledge graphs from vectorized topographic historical maps\",\"authors\":\"Basel Shbita, Craig A. Knoblock, Weiwei Duan, Yao-Yi Chiang, Johannes H. Uhl, S. Leyk\",\"doi\":\"10.3233/sw-222918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historical maps provide rich information for researchers in many areas, including the social and natural sciences. These maps contain detailed documentation of a wide variety of natural and human-made features and their changes over time, such as changes in transportation networks or the decline of wetlands or forest areas. Analyzing changes over time in such maps can be labor-intensive for a scientist, even after the geographic features have been digitized and converted to a vector format. Knowledge Graphs (KGs) are the appropriate representations to store and link such data and support semantic and temporal querying to facilitate change analysis. KGs combine expressivity, interoperability, and standardization in the Semantic Web stack, thus providing a strong foundation for querying and analysis. In this paper, we present an automatic approach to convert vector geographic features extracted from multiple historical maps into contextualized spatio-temporal KGs. The resulting graphs can be easily queried and visualized to understand the changes in different regions over time. We evaluate our technique on railroad networks and wetland areas extracted from the United States Geological Survey (USGS) historical topographic maps for several regions over multiple map sheets and editions. We also demonstrate how the automatically constructed linked data (i.e., KGs) enable effective querying and visualization of changes over different points in time.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"3 1\",\"pages\":\"527-549\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-222918\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-222918","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Building spatio-temporal knowledge graphs from vectorized topographic historical maps
Historical maps provide rich information for researchers in many areas, including the social and natural sciences. These maps contain detailed documentation of a wide variety of natural and human-made features and their changes over time, such as changes in transportation networks or the decline of wetlands or forest areas. Analyzing changes over time in such maps can be labor-intensive for a scientist, even after the geographic features have been digitized and converted to a vector format. Knowledge Graphs (KGs) are the appropriate representations to store and link such data and support semantic and temporal querying to facilitate change analysis. KGs combine expressivity, interoperability, and standardization in the Semantic Web stack, thus providing a strong foundation for querying and analysis. In this paper, we present an automatic approach to convert vector geographic features extracted from multiple historical maps into contextualized spatio-temporal KGs. The resulting graphs can be easily queried and visualized to understand the changes in different regions over time. We evaluate our technique on railroad networks and wetland areas extracted from the United States Geological Survey (USGS) historical topographic maps for several regions over multiple map sheets and editions. We also demonstrate how the automatically constructed linked data (i.e., KGs) enable effective querying and visualization of changes over different points in time.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.