基于最大循环自相关选择的信号检测传感特征的推导

S. Narieda, Daiki Cho, Hiromichi Ogasawara, K. Umebayashi, T. Fujii, H. Naruse
{"title":"基于最大循环自相关选择的信号检测传感特征的推导","authors":"S. Narieda, Daiki Cho, Hiromichi Ogasawara, K. Umebayashi, T. Fujii, H. Naruse","doi":"10.1109/VTCFall.2019.8891131","DOIUrl":null,"url":null,"abstract":"Maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing is one of the low complexity spectrum sensing techniques in cyclostationary detection techniques. However, spectrum sensing features of MCAS- based spectrum sensing have never been theoretically derived. This paper provides a derivation result of spectrum sensing characteristics for MCAS-based spectrum sensing in cognitive radio networks. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the examples demonstrate that numerical and theoretical values match well with each other.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"75 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Derivation of Sensing Features for Maximum Cyclic Autocorrelation Selection Based Signal Detection\",\"authors\":\"S. Narieda, Daiki Cho, Hiromichi Ogasawara, K. Umebayashi, T. Fujii, H. Naruse\",\"doi\":\"10.1109/VTCFall.2019.8891131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing is one of the low complexity spectrum sensing techniques in cyclostationary detection techniques. However, spectrum sensing features of MCAS- based spectrum sensing have never been theoretically derived. This paper provides a derivation result of spectrum sensing characteristics for MCAS-based spectrum sensing in cognitive radio networks. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the examples demonstrate that numerical and theoretical values match well with each other.\",\"PeriodicalId\":6713,\"journal\":{\"name\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"volume\":\"75 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2019.8891131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于最大循环自相关选择(MCAS)的频谱感知技术是周期平稳检测技术中复杂度较低的一种。然而,基于MCAS的频谱传感的频谱传感特性还没有从理论上推导出来。本文给出了认知无线电网络中基于mcas的频谱感知特性的推导结果。在本研究中,我们导出了基于mcas的频谱传感的信号检测概率和虚警概率的封闭形式解。将理论值与数值算例进行了比较,算例表明理论值与数值吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivation of Sensing Features for Maximum Cyclic Autocorrelation Selection Based Signal Detection
Maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing is one of the low complexity spectrum sensing techniques in cyclostationary detection techniques. However, spectrum sensing features of MCAS- based spectrum sensing have never been theoretically derived. This paper provides a derivation result of spectrum sensing characteristics for MCAS-based spectrum sensing in cognitive radio networks. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the examples demonstrate that numerical and theoretical values match well with each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Emergency Braking as a Fail-Safe State in Platooning: A Simulative Approach Online Task Offloading with Bandit Learning in Fog-Assisted IoT Systems Hybrid Localization: A Low Cost, Low Complexity Approach Based on Wi-Fi and Odometry Residual Energy Optimization for MIMO SWIPT Two-Way Relaying System Traffic Forecast in Mobile Networks: Classification System Using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1