S. Narieda, Daiki Cho, Hiromichi Ogasawara, K. Umebayashi, T. Fujii, H. Naruse
{"title":"基于最大循环自相关选择的信号检测传感特征的推导","authors":"S. Narieda, Daiki Cho, Hiromichi Ogasawara, K. Umebayashi, T. Fujii, H. Naruse","doi":"10.1109/VTCFall.2019.8891131","DOIUrl":null,"url":null,"abstract":"Maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing is one of the low complexity spectrum sensing techniques in cyclostationary detection techniques. However, spectrum sensing features of MCAS- based spectrum sensing have never been theoretically derived. This paper provides a derivation result of spectrum sensing characteristics for MCAS-based spectrum sensing in cognitive radio networks. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the examples demonstrate that numerical and theoretical values match well with each other.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"75 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Derivation of Sensing Features for Maximum Cyclic Autocorrelation Selection Based Signal Detection\",\"authors\":\"S. Narieda, Daiki Cho, Hiromichi Ogasawara, K. Umebayashi, T. Fujii, H. Naruse\",\"doi\":\"10.1109/VTCFall.2019.8891131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing is one of the low complexity spectrum sensing techniques in cyclostationary detection techniques. However, spectrum sensing features of MCAS- based spectrum sensing have never been theoretically derived. This paper provides a derivation result of spectrum sensing characteristics for MCAS-based spectrum sensing in cognitive radio networks. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the examples demonstrate that numerical and theoretical values match well with each other.\",\"PeriodicalId\":6713,\"journal\":{\"name\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"volume\":\"75 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2019.8891131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Derivation of Sensing Features for Maximum Cyclic Autocorrelation Selection Based Signal Detection
Maximum cyclic autocorrelation selection (MCAS)-based spectrum sensing is one of the low complexity spectrum sensing techniques in cyclostationary detection techniques. However, spectrum sensing features of MCAS- based spectrum sensing have never been theoretically derived. This paper provides a derivation result of spectrum sensing characteristics for MCAS-based spectrum sensing in cognitive radio networks. In this study, we derive closed form solutions for signal detection probability and false alarm probability for MCAS-based spectrum sensing. The theoretical values are compared with numerical examples, and the examples demonstrate that numerical and theoretical values match well with each other.