用润滑近似理论分析非牛顿聚合物的滚轧膜

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Journal of Plastic Film & Sheeting Pub Date : 2023-01-11 DOI:10.1177/87560879221150751
H. Atif, Mobeen Akhtar, Muhammad A. Javed
{"title":"用润滑近似理论分析非牛顿聚合物的滚轧膜","authors":"H. Atif, Mobeen Akhtar, Muhammad A. Javed","doi":"10.1177/87560879221150751","DOIUrl":null,"url":null,"abstract":"Roll-coating process plays an important role in many industries for its practical applications such as paint, PVC coated fabrics and plastic industries. There are several roll-to-roll coating methods including forward and reverse roll-coating. However, the roll-over-web coating study of the Rabinowitsch model is presented in this paper. The flow equations for the problem are developed and converted into dimensionless form with the help of dimensionless variables and then finally simplified by a well-known lubrication approximation theory. We employ the regular perturbation technique to get analytical expressions for velocity, pressure, and pressure gradient. Engineering quantities such as power input function and roll-separating force are calculated by Runge-Kutta method. The dimensionless Rabinowitsch parameter effect on velocity, pressure, pressure gradient, load-carrying force, and power input are shown graphically. It is interesting to note that for the shear thickening case, the Rabinowitsch model predicts 35% higher pressure, while in the shear thinning case it predicts 29% less pressure in the nip region when compared to the Newtonian model. The force and power show a decreasing trend on increasing the dimensionless Rabinowitsch parameter a. Moreover, the separation point shifts right of its Newtonian value when fluid behaves like shear thickening and volumetric flow rate increases which causes the coating thickness to increase.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":"28 1","pages":"241 - 262"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Theoretical Analysis of Roll-over-web Coating of a Non-Newtonian Polymer Using Lubrication Approximation Theory\",\"authors\":\"H. Atif, Mobeen Akhtar, Muhammad A. Javed\",\"doi\":\"10.1177/87560879221150751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roll-coating process plays an important role in many industries for its practical applications such as paint, PVC coated fabrics and plastic industries. There are several roll-to-roll coating methods including forward and reverse roll-coating. However, the roll-over-web coating study of the Rabinowitsch model is presented in this paper. The flow equations for the problem are developed and converted into dimensionless form with the help of dimensionless variables and then finally simplified by a well-known lubrication approximation theory. We employ the regular perturbation technique to get analytical expressions for velocity, pressure, and pressure gradient. Engineering quantities such as power input function and roll-separating force are calculated by Runge-Kutta method. The dimensionless Rabinowitsch parameter effect on velocity, pressure, pressure gradient, load-carrying force, and power input are shown graphically. It is interesting to note that for the shear thickening case, the Rabinowitsch model predicts 35% higher pressure, while in the shear thinning case it predicts 29% less pressure in the nip region when compared to the Newtonian model. The force and power show a decreasing trend on increasing the dimensionless Rabinowitsch parameter a. Moreover, the separation point shifts right of its Newtonian value when fluid behaves like shear thickening and volumetric flow rate increases which causes the coating thickness to increase.\",\"PeriodicalId\":16823,\"journal\":{\"name\":\"Journal of Plastic Film & Sheeting\",\"volume\":\"28 1\",\"pages\":\"241 - 262\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plastic Film & Sheeting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/87560879221150751\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879221150751","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 2

摘要

滚涂工艺在许多行业中发挥着重要的作用,如油漆、PVC涂层织物和塑料行业。有几种卷对卷涂布方法,包括正向涂布和反向涂布。然而,本文提出了Rabinowitsch模型的滚轧涂层研究。利用无量纲变量建立了该问题的流动方程,并将其转化为无量纲形式,最后利用著名的润滑近似理论进行了简化。我们采用正则摄动技术得到了速度、压力和压力梯度的解析表达式。采用龙格-库塔法计算了动力输入函数和分辊力等工程量。无因次Rabinowitsch参数对速度、压力、压力梯度、承载力和功率输入的影响用图形表示。有趣的是,在剪切增厚的情况下,Rabinowitsch模型预测的压力比牛顿模型高35%,而在剪切变薄的情况下,与牛顿模型相比,它预测的压痕区域压力比牛顿模型低29%。随着无量纲Rabinowitsch参数a的增大,力和功率均呈减小趋势。当流体表现为剪切增稠,体积流量增大时,分离点向牛顿值右移,导致涂层厚度增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical Analysis of Roll-over-web Coating of a Non-Newtonian Polymer Using Lubrication Approximation Theory
Roll-coating process plays an important role in many industries for its practical applications such as paint, PVC coated fabrics and plastic industries. There are several roll-to-roll coating methods including forward and reverse roll-coating. However, the roll-over-web coating study of the Rabinowitsch model is presented in this paper. The flow equations for the problem are developed and converted into dimensionless form with the help of dimensionless variables and then finally simplified by a well-known lubrication approximation theory. We employ the regular perturbation technique to get analytical expressions for velocity, pressure, and pressure gradient. Engineering quantities such as power input function and roll-separating force are calculated by Runge-Kutta method. The dimensionless Rabinowitsch parameter effect on velocity, pressure, pressure gradient, load-carrying force, and power input are shown graphically. It is interesting to note that for the shear thickening case, the Rabinowitsch model predicts 35% higher pressure, while in the shear thinning case it predicts 29% less pressure in the nip region when compared to the Newtonian model. The force and power show a decreasing trend on increasing the dimensionless Rabinowitsch parameter a. Moreover, the separation point shifts right of its Newtonian value when fluid behaves like shear thickening and volumetric flow rate increases which causes the coating thickness to increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Effects of Lithium bis(trifluoromethanesulfonyl)imide loading on thermal, mechanical and ion conducting properties of specialty interlayer films derived from scrap Polyvinyl butyral Industry News Vol 40(3) Making the most from measuring counts Coating of micropolar fluid during non-isothermal reverse roll coating phenomena Partially phosphorylated poly(vinyl alcohol) – A promising candidate in corrosion protection of magnesium for the biomedical industry?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1