超氧化物歧化酶(SOD)的工业生产综述

Rajesh Gopal, S. Elumalai
{"title":"超氧化物歧化酶(SOD)的工业生产综述","authors":"Rajesh Gopal, S. Elumalai","doi":"10.4172/2329-8901.1000179","DOIUrl":null,"url":null,"abstract":"The use of chemical advances to mechanical research, improvement, and assembling has turned into a critical field. Since the creation of rough rennet in 1874, a few catalysts have been marketed, and utilized for restorative, supplementary, and different applications. Late headways in biotechnology now enable organizations to create more secure and more affordable chemicals with upgraded intensity and specificity. Cancer prevention agent catalysts are developing as another expansion to the pool of modern chemicals and are outperforming every single other compound as far as the volume of research and creation. In the 1990s, a cell reinforcement chemical-superoxide dismutase (SOD) was brought into the market. In spite of the fact that the catalyst at first demonstrated extraordinary guarantee in restorative applications, it didn't perform up to desires. Therefore, its utilization was restricted to nontranquilize applications in people and medication applications in creatures. This survey compresses the ascent and fall of SOD at the mechanical level, the purposes behind this, and potential future push territories that should be tended to. The audit likewise concentrates on other modernly significant parts of SOD, for example, mechanical significance, catalyst designing, generation procedures, and process streamlining and scale-up.","PeriodicalId":16865,"journal":{"name":"Journal of Probiotics & Health","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Industrial Production of Superoxide Dismutase (SOD): A Mini Review\",\"authors\":\"Rajesh Gopal, S. Elumalai\",\"doi\":\"10.4172/2329-8901.1000179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of chemical advances to mechanical research, improvement, and assembling has turned into a critical field. Since the creation of rough rennet in 1874, a few catalysts have been marketed, and utilized for restorative, supplementary, and different applications. Late headways in biotechnology now enable organizations to create more secure and more affordable chemicals with upgraded intensity and specificity. Cancer prevention agent catalysts are developing as another expansion to the pool of modern chemicals and are outperforming every single other compound as far as the volume of research and creation. In the 1990s, a cell reinforcement chemical-superoxide dismutase (SOD) was brought into the market. In spite of the fact that the catalyst at first demonstrated extraordinary guarantee in restorative applications, it didn't perform up to desires. Therefore, its utilization was restricted to nontranquilize applications in people and medication applications in creatures. This survey compresses the ascent and fall of SOD at the mechanical level, the purposes behind this, and potential future push territories that should be tended to. The audit likewise concentrates on other modernly significant parts of SOD, for example, mechanical significance, catalyst designing, generation procedures, and process streamlining and scale-up.\",\"PeriodicalId\":16865,\"journal\":{\"name\":\"Journal of Probiotics & Health\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Probiotics & Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2329-8901.1000179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probiotics & Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2329-8901.1000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

利用化学进步进行机械研究、改进和装配已成为一个关键领域。自1874年粗凝乳酶发明以来,一些催化剂已经上市,并用于修复,补充和不同的应用。生物技术的最新进展现在使各组织能够创造出更安全、更实惠的化学品,其强度和特异性都有所提高。防癌剂催化剂作为现代化学物质的又一扩展,正在发展,就研究和创造的数量而言,它的表现超过了其他任何一种化合物。20世纪90年代,一种细胞增强化学物质——超氧化物歧化酶(SOD)进入市场。尽管事实上,催化剂在恢复应用中首先表现出非凡的保证,但它并没有达到预期的效果。因此,它的应用仅限于对人体的非镇静应用和对生物的药物应用。这项调查压缩了SOD在机械水平上的上升和下降,这背后的目的,以及未来应该关注的潜在推动领域。审计同样集中在SOD的其他现代重要部分,例如,机械意义,催化剂设计,生成程序,流程简化和放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Industrial Production of Superoxide Dismutase (SOD): A Mini Review
The use of chemical advances to mechanical research, improvement, and assembling has turned into a critical field. Since the creation of rough rennet in 1874, a few catalysts have been marketed, and utilized for restorative, supplementary, and different applications. Late headways in biotechnology now enable organizations to create more secure and more affordable chemicals with upgraded intensity and specificity. Cancer prevention agent catalysts are developing as another expansion to the pool of modern chemicals and are outperforming every single other compound as far as the volume of research and creation. In the 1990s, a cell reinforcement chemical-superoxide dismutase (SOD) was brought into the market. In spite of the fact that the catalyst at first demonstrated extraordinary guarantee in restorative applications, it didn't perform up to desires. Therefore, its utilization was restricted to nontranquilize applications in people and medication applications in creatures. This survey compresses the ascent and fall of SOD at the mechanical level, the purposes behind this, and potential future push territories that should be tended to. The audit likewise concentrates on other modernly significant parts of SOD, for example, mechanical significance, catalyst designing, generation procedures, and process streamlining and scale-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bacillus Bacteria as Probiotics The Industry Originated Probiotic Bacteria Role in COVID-19 The Evaluation of the Effects of Orange Juice on the Microflora, Haematologyand Selected Organs of Albino Rats Antibiotic Resistance in Lactic Acid Bacteria The Role of Dietary Fiber and Microbiome Composition to Decrease theDeleterious Effects of Nano-Plastic in Monogastric Animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1