拔掉插头?预测是计算机还是人类应该分割图像

D. Gurari, S. Jain, Margrit Betke, K. Grauman
{"title":"拔掉插头?预测是计算机还是人类应该分割图像","authors":"D. Gurari, S. Jain, Margrit Betke, K. Grauman","doi":"10.1109/CVPR.2016.48","DOIUrl":null,"url":null,"abstract":"Foreground object segmentation is a critical step for many image analysis tasks. While automated methods can produce high-quality results, their failures disappoint users in need of practical solutions. We propose a resource allocation framework for predicting how best to allocate a fixed budget of human annotation effort in order to collect higher quality segmentations for a given batch of images and automated methods. The framework is based on a proposed prediction module that estimates the quality of given algorithm-drawn segmentations. We demonstrate the value of the framework for two novel tasks related to \"pulling the plug\" on computer and human annotators. Specifically, we implement two systems that automatically decide, for a batch of images, when to replace 1) humans with computers to create coarse segmentations required to initialize segmentation tools and 2) computers with humans to create final, fine-grained segmentations. Experiments demonstrate the advantage of relying on a mix of human and computer efforts over relying on either resource alone for segmenting objects in three diverse datasets representing visible, phase contrast microscopy, and fluorescence microscopy images.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"16 1","pages":"382-391"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Pull the Plug? Predicting If Computers or Humans Should Segment Images\",\"authors\":\"D. Gurari, S. Jain, Margrit Betke, K. Grauman\",\"doi\":\"10.1109/CVPR.2016.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foreground object segmentation is a critical step for many image analysis tasks. While automated methods can produce high-quality results, their failures disappoint users in need of practical solutions. We propose a resource allocation framework for predicting how best to allocate a fixed budget of human annotation effort in order to collect higher quality segmentations for a given batch of images and automated methods. The framework is based on a proposed prediction module that estimates the quality of given algorithm-drawn segmentations. We demonstrate the value of the framework for two novel tasks related to \\\"pulling the plug\\\" on computer and human annotators. Specifically, we implement two systems that automatically decide, for a batch of images, when to replace 1) humans with computers to create coarse segmentations required to initialize segmentation tools and 2) computers with humans to create final, fine-grained segmentations. Experiments demonstrate the advantage of relying on a mix of human and computer efforts over relying on either resource alone for segmenting objects in three diverse datasets representing visible, phase contrast microscopy, and fluorescence microscopy images.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"16 1\",\"pages\":\"382-391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

前景目标分割是许多图像分析任务的关键步骤。虽然自动化方法可以产生高质量的结果,但它们的失败使需要实际解决方案的用户失望。我们提出了一个资源分配框架,用于预测如何最好地分配人类注释工作的固定预算,以便为给定的一批图像和自动化方法收集更高质量的分割。该框架基于一个预测模块,该模块估计给定算法绘制的分割的质量。我们展示了该框架在两个与计算机和人类注释器“拔掉插头”相关的新任务中的价值。具体来说,我们实现了两个系统,它们自动决定,对于一批图像,何时用计算机代替人类来创建初始化分割工具所需的粗分割,以及2)用计算机来创建最终的细粒度分割。实验证明,在三个不同的数据集中,分别代表可见、相对比显微镜和荧光显微镜图像,依靠人和计算机的混合努力比单独依靠任何一种资源来分割对象的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pull the Plug? Predicting If Computers or Humans Should Segment Images
Foreground object segmentation is a critical step for many image analysis tasks. While automated methods can produce high-quality results, their failures disappoint users in need of practical solutions. We propose a resource allocation framework for predicting how best to allocate a fixed budget of human annotation effort in order to collect higher quality segmentations for a given batch of images and automated methods. The framework is based on a proposed prediction module that estimates the quality of given algorithm-drawn segmentations. We demonstrate the value of the framework for two novel tasks related to "pulling the plug" on computer and human annotators. Specifically, we implement two systems that automatically decide, for a batch of images, when to replace 1) humans with computers to create coarse segmentations required to initialize segmentation tools and 2) computers with humans to create final, fine-grained segmentations. Experiments demonstrate the advantage of relying on a mix of human and computer efforts over relying on either resource alone for segmenting objects in three diverse datasets representing visible, phase contrast microscopy, and fluorescence microscopy images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1