用于混合MEMS的倒装芯片组装微平台

Mei-fang Yang, J. Chen, Y. Hao
{"title":"用于混合MEMS的倒装芯片组装微平台","authors":"Mei-fang Yang, J. Chen, Y. Hao","doi":"10.1109/NEMS.2006.334845","DOIUrl":null,"url":null,"abstract":"As MicroElectroMechanical Systems become more complicated, building them as integrated systems may not be possible and exploring new microassembly technologies becomes necessary. A novel flip-chip assembled microplatform combined with a microjig and alignment pairs is presented, both of which are fabricated with room-temperature, non-aggressive processes that can accommodate a board range of devices. With an optimized assembly sequence, 3 mum in plane position accuracy has been achieved by flip-chip positioning, coarse alignment and fine alignment enabled by various mechanisms. Moreover, the distance in z axis can also be pinpointed. Sufficient mechanical and electrical connections have been formed at bonds. It can be applied to various microcomponent and substrate material combinations, enabling hybrid MEMS efficiently and economically","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"60 1","pages":"563-566"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flip-chip Assembled Microplatform for Hybrid MEMS\",\"authors\":\"Mei-fang Yang, J. Chen, Y. Hao\",\"doi\":\"10.1109/NEMS.2006.334845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As MicroElectroMechanical Systems become more complicated, building them as integrated systems may not be possible and exploring new microassembly technologies becomes necessary. A novel flip-chip assembled microplatform combined with a microjig and alignment pairs is presented, both of which are fabricated with room-temperature, non-aggressive processes that can accommodate a board range of devices. With an optimized assembly sequence, 3 mum in plane position accuracy has been achieved by flip-chip positioning, coarse alignment and fine alignment enabled by various mechanisms. Moreover, the distance in z axis can also be pinpointed. Sufficient mechanical and electrical connections have been formed at bonds. It can be applied to various microcomponent and substrate material combinations, enabling hybrid MEMS efficiently and economically\",\"PeriodicalId\":6362,\"journal\":{\"name\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"60 1\",\"pages\":\"563-566\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2006.334845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着微机电系统变得越来越复杂,将它们构建为集成系统可能是不可能的,探索新的微组装技术成为必要。提出了一种新型的倒装芯片组装微平台,结合了微夹具和对准对,两者都是用室温、非侵蚀工艺制造的,可以容纳各种电路板设备。通过优化的装配顺序,通过倒装芯片定位、各种机构的粗对准和精对准,实现了3个百分点的平面定位精度。此外,z轴上的距离也可以确定。在键处已形成足够的机械和电气连接。它可以应用于各种微元件和衬底材料组合,使混合MEMS高效和经济
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Flip-chip Assembled Microplatform for Hybrid MEMS
As MicroElectroMechanical Systems become more complicated, building them as integrated systems may not be possible and exploring new microassembly technologies becomes necessary. A novel flip-chip assembled microplatform combined with a microjig and alignment pairs is presented, both of which are fabricated with room-temperature, non-aggressive processes that can accommodate a board range of devices. With an optimized assembly sequence, 3 mum in plane position accuracy has been achieved by flip-chip positioning, coarse alignment and fine alignment enabled by various mechanisms. Moreover, the distance in z axis can also be pinpointed. Sufficient mechanical and electrical connections have been formed at bonds. It can be applied to various microcomponent and substrate material combinations, enabling hybrid MEMS efficiently and economically
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Nano-Imprinting Lithography Based on Infrared Pulsed Laser Heating A RFID Tag Based Remote DNA sensing System Simultaneous Quantification for Hepatitis B Virus and Hepatitis C Virus Using Real-time PCR Lab-on-a-chip Self-Welded Metal-Catalyzed Carbon Nanotube Piezoresistors with Very Large Longitudinal Piezoresistivity of ~ 4×10-8 Pa-1 Fabrication and Test of MEMS/NEMS based Polyimide Integrated Humidity, Temperature and Pressure Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1