Carolyn E. Jones-Tinsley , Randall J. Olson , Miranda Mader , Peyton T. Wickham , Katelyn Gutowsky , Claire Wong , Sung Sik Chu , Noah E.P. Milman , Hung Cao , Miranda M. Lim
{"title":"草原田鼠早期睡眠中断对后期睡眠发育具有长期、性别特异性的影响","authors":"Carolyn E. Jones-Tinsley , Randall J. Olson , Miranda Mader , Peyton T. Wickham , Katelyn Gutowsky , Claire Wong , Sung Sik Chu , Noah E.P. Milman , Hung Cao , Miranda M. Lim","doi":"10.1016/j.nbscr.2022.100087","DOIUrl":null,"url":null,"abstract":"<div><p>In mammals, sleep duration is highest in the early postnatal period of life and is critical for shaping neural circuits that control the development of complex behaviors. The prairie vole is a wild, highly social rodent that serves as a unique model for the study of complex, species-typical social behaviors. Previous work in our laboratory has found that early life sleep disruption (ELSD) in prairie voles during a sensitive window of postnatal development leads to long lasting changes in social and cognitive behaviors as well as structural changes in excitatory and inhibitory neural circuits in the brain. However, it is currently unknown how later sleep is impacted by ELSD, both shortly after ELSD and over the long term. Therefore, the aim of this study was to describe the effects of ELSD on later life sleep, compared to sleep in normally developing prairie voles. First, we conducted tethered electroencephalogram/electromyogram (EEG/EMG) recordings in juvenile prairie voles undergoing ELSD, compared to Control conditions. Second, we conducted 24 h of home cage tethered EEG/EMG recordings in either adolescent or adult male and female prairie voles that had previously undergone ELSD or Control conditions as juveniles. We found that, as adults, male ELSD prairie voles showed persistently lower REM sleep duration and female ELSD prairie voles showed persistently higher NREM sleep duration compared to Controls, but no other sleep parameters differed. We concluded that 1) persistent effects of ELSD on sleep into adulthood may contribute to the social and cognitive deficits observed in adult voles, and 2) sleep disruption early in life can influence later sleep patterns in adulthood.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"14 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/8d/main.PMC9879777.pdf","citationCount":"1","resultStr":"{\"title\":\"Early life sleep disruption has long lasting, sex specific effects on later development of sleep in prairie voles\",\"authors\":\"Carolyn E. Jones-Tinsley , Randall J. Olson , Miranda Mader , Peyton T. Wickham , Katelyn Gutowsky , Claire Wong , Sung Sik Chu , Noah E.P. Milman , Hung Cao , Miranda M. Lim\",\"doi\":\"10.1016/j.nbscr.2022.100087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In mammals, sleep duration is highest in the early postnatal period of life and is critical for shaping neural circuits that control the development of complex behaviors. The prairie vole is a wild, highly social rodent that serves as a unique model for the study of complex, species-typical social behaviors. Previous work in our laboratory has found that early life sleep disruption (ELSD) in prairie voles during a sensitive window of postnatal development leads to long lasting changes in social and cognitive behaviors as well as structural changes in excitatory and inhibitory neural circuits in the brain. However, it is currently unknown how later sleep is impacted by ELSD, both shortly after ELSD and over the long term. Therefore, the aim of this study was to describe the effects of ELSD on later life sleep, compared to sleep in normally developing prairie voles. First, we conducted tethered electroencephalogram/electromyogram (EEG/EMG) recordings in juvenile prairie voles undergoing ELSD, compared to Control conditions. Second, we conducted 24 h of home cage tethered EEG/EMG recordings in either adolescent or adult male and female prairie voles that had previously undergone ELSD or Control conditions as juveniles. We found that, as adults, male ELSD prairie voles showed persistently lower REM sleep duration and female ELSD prairie voles showed persistently higher NREM sleep duration compared to Controls, but no other sleep parameters differed. We concluded that 1) persistent effects of ELSD on sleep into adulthood may contribute to the social and cognitive deficits observed in adult voles, and 2) sleep disruption early in life can influence later sleep patterns in adulthood.</p></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"14 \",\"pages\":\"Article 100087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/8d/main.PMC9879777.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245199442200013X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245199442200013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Early life sleep disruption has long lasting, sex specific effects on later development of sleep in prairie voles
In mammals, sleep duration is highest in the early postnatal period of life and is critical for shaping neural circuits that control the development of complex behaviors. The prairie vole is a wild, highly social rodent that serves as a unique model for the study of complex, species-typical social behaviors. Previous work in our laboratory has found that early life sleep disruption (ELSD) in prairie voles during a sensitive window of postnatal development leads to long lasting changes in social and cognitive behaviors as well as structural changes in excitatory and inhibitory neural circuits in the brain. However, it is currently unknown how later sleep is impacted by ELSD, both shortly after ELSD and over the long term. Therefore, the aim of this study was to describe the effects of ELSD on later life sleep, compared to sleep in normally developing prairie voles. First, we conducted tethered electroencephalogram/electromyogram (EEG/EMG) recordings in juvenile prairie voles undergoing ELSD, compared to Control conditions. Second, we conducted 24 h of home cage tethered EEG/EMG recordings in either adolescent or adult male and female prairie voles that had previously undergone ELSD or Control conditions as juveniles. We found that, as adults, male ELSD prairie voles showed persistently lower REM sleep duration and female ELSD prairie voles showed persistently higher NREM sleep duration compared to Controls, but no other sleep parameters differed. We concluded that 1) persistent effects of ELSD on sleep into adulthood may contribute to the social and cognitive deficits observed in adult voles, and 2) sleep disruption early in life can influence later sleep patterns in adulthood.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.