高效原油脱水罐的设计与研制(一)

IF 0.5 4区 工程技术 Q4 ENERGY & FUELS Ct&f-Ciencia Tecnologia Y Futuro Pub Date : 2008-12-01 DOI:10.29047/01225383.472
J. E. Forero, Olga-Patricia Ortiz, Fredy-Abelardo Nariño, J. Díaz, H. Peña
{"title":"高效原油脱水罐的设计与研制(一)","authors":"J. E. Forero, Olga-Patricia Ortiz, Fredy-Abelardo Nariño, J. Díaz, H. Peña","doi":"10.29047/01225383.472","DOIUrl":null,"url":null,"abstract":"This paper introduces a new tank design for dehydrating and desalting large volumes of crude oils previously degasified, crude oil dehydration efficiency is reduced by gas presence in the emulsion interphase. The design presented in this paper is versatile (it is adaptable to any classical dehydration process), highly efficient in terms of separation (values usually greater than 90% and/or treated crude oil BSW less than 0,5% are ensured), low installation and operation costs, less consumption of additives. These are some of the advantages found in pilot tests plants and proven in industrial systems at the Ecopetrol S.A. production fields with treatment capacities from 14 to 50 KBD. Although this process also can be applied to other ranks of flow, maintaining the design critical conditions of each case in particular.  This system does not exhibit the typical limitations shown by treatment tradicional systems (FWKO, Gun Barrel, thermal and electrostatic separators, etc.) (Al-Ghamdi, 2007) since it can be easily adapted to system treatments for light, intermediate, and heavy crude oils and to treatments with BSW content ranging from a very low levels of < 1% to very high levels > 95%, values that are not unusual in production fields nowadays, especially where accelerated production methods are used.","PeriodicalId":55200,"journal":{"name":"Ct&f-Ciencia Tecnologia Y Futuro","volume":"59 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"DESIGN AND DEVELOPMENT OF A HIGH EFFICIENCY TANK FOR CRUDE OIL DEHYDRATION (I)\",\"authors\":\"J. E. Forero, Olga-Patricia Ortiz, Fredy-Abelardo Nariño, J. Díaz, H. Peña\",\"doi\":\"10.29047/01225383.472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new tank design for dehydrating and desalting large volumes of crude oils previously degasified, crude oil dehydration efficiency is reduced by gas presence in the emulsion interphase. The design presented in this paper is versatile (it is adaptable to any classical dehydration process), highly efficient in terms of separation (values usually greater than 90% and/or treated crude oil BSW less than 0,5% are ensured), low installation and operation costs, less consumption of additives. These are some of the advantages found in pilot tests plants and proven in industrial systems at the Ecopetrol S.A. production fields with treatment capacities from 14 to 50 KBD. Although this process also can be applied to other ranks of flow, maintaining the design critical conditions of each case in particular.  This system does not exhibit the typical limitations shown by treatment tradicional systems (FWKO, Gun Barrel, thermal and electrostatic separators, etc.) (Al-Ghamdi, 2007) since it can be easily adapted to system treatments for light, intermediate, and heavy crude oils and to treatments with BSW content ranging from a very low levels of < 1% to very high levels > 95%, values that are not unusual in production fields nowadays, especially where accelerated production methods are used.\",\"PeriodicalId\":55200,\"journal\":{\"name\":\"Ct&f-Ciencia Tecnologia Y Futuro\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ct&f-Ciencia Tecnologia Y Futuro\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.472\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ct&f-Ciencia Tecnologia Y Futuro","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.29047/01225383.472","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种新的储罐设计,用于对大量已脱气的原油进行脱水脱盐,由于乳化相中存在气体而降低了原油脱水效率。本文提出的设计具有通用性(适用于任何经典的脱水工艺)、分离效率高(通常大于90%和/或处理后的原油BSW小于0.5%)、安装和运行成本低、添加剂消耗少。这些都是在中试工厂中发现的一些优势,并在Ecopetrol S.A.生产领域的工业系统中得到了验证,处理能力从14到50 KBD。虽然这个过程也可以应用到其他等级的流量,保持设计的临界条件的每一种情况下,特别是。该系统没有传统系统(FWKO、Gun Barrel、热和静电分离器等)所表现出的典型局限性(Al-Ghamdi, 2007),因为它可以很容易地适应轻、中、重质原油的系统处理,以及BSW含量从非常低的< 1%到非常高的> 95%的处理,这些值在当今的生产领域并不罕见,特别是在使用加速生产方法的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DESIGN AND DEVELOPMENT OF A HIGH EFFICIENCY TANK FOR CRUDE OIL DEHYDRATION (I)
This paper introduces a new tank design for dehydrating and desalting large volumes of crude oils previously degasified, crude oil dehydration efficiency is reduced by gas presence in the emulsion interphase. The design presented in this paper is versatile (it is adaptable to any classical dehydration process), highly efficient in terms of separation (values usually greater than 90% and/or treated crude oil BSW less than 0,5% are ensured), low installation and operation costs, less consumption of additives. These are some of the advantages found in pilot tests plants and proven in industrial systems at the Ecopetrol S.A. production fields with treatment capacities from 14 to 50 KBD. Although this process also can be applied to other ranks of flow, maintaining the design critical conditions of each case in particular.  This system does not exhibit the typical limitations shown by treatment tradicional systems (FWKO, Gun Barrel, thermal and electrostatic separators, etc.) (Al-Ghamdi, 2007) since it can be easily adapted to system treatments for light, intermediate, and heavy crude oils and to treatments with BSW content ranging from a very low levels of < 1% to very high levels > 95%, values that are not unusual in production fields nowadays, especially where accelerated production methods are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ct&f-Ciencia Tecnologia Y Futuro
Ct&f-Ciencia Tecnologia Y Futuro Energy-General Energy
CiteScore
1.50
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The objective of CT&F is to publish the achievements of scientific research and technological developments of Ecopetrol S.A. and the research of other institutions in the field of oil, gas and alternative energy sources. CT&F welcomes original, novel and high-impact contributions from all the fields in the oil and gas industry like: Acquisition and Exploration technologies, Basins characterization and modeling, Petroleum geology, Reservoir modeling, Enhanced Oil Recovery Technologies, Unconventional resources, Petroleum refining, Petrochemistry, Upgrading technologies, Technologies for fuels quality, Process modeling, and optimization, Supply chain optimization, Biofuels, Renewable energies.
期刊最新文献
Potential and economic feasibility of a wind power plant in Ciudad Juárez, México Assessment of terrigenous and marine sourced oils mixtures: Los Manueles field, Maracaibo basin Venezuela Comparison of fuel consumption and recoverable energy according to NEDC and WLTP cycles of a vehicle Detachment levels of Colombian caribbean mud volcanoes A practical guide of the 2D acoustic full waveform inversion on synthetic land seismic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1