石墨烯织物的肌肉活动监测和表面肌电图(sEMG)

Ozberk Ozturk, M. Yapici
{"title":"石墨烯织物的肌肉活动监测和表面肌电图(sEMG)","authors":"Ozberk Ozturk, M. Yapici","doi":"10.1109/SENSORS43011.2019.8956801","DOIUrl":null,"url":null,"abstract":"In this study, we report, for the first time, wearable graphene textile electrodes for monitoring of muscular activity and surface electromyography (sEMG) applications. The feasibility of graphene textiles in wearable muscular monitoring was successfully demonstrated by the acquisition of sEMG signals with wearable graphene textiles, and their performance was benchmarked against commercial, wet Ag/AgCl electrodes. Comparisons were performed in terms of signal-to-noise ratio (SNR), cross correlation and sensitivity to power-line interference. Despite their larger susceptibility to power line interference, graphene textile electrodes displayed excellent similarity with Ag/AgCl electrodes in terms of signal-to-noise ratio (SNR) and signal morphology; with correlation values reaching up to 97 % for sEMG signals acquired from the biceps brachii muscle.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Muscular Activity Monitoring and Surface Electromyography (sEMG) with Graphene Textiles\",\"authors\":\"Ozberk Ozturk, M. Yapici\",\"doi\":\"10.1109/SENSORS43011.2019.8956801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we report, for the first time, wearable graphene textile electrodes for monitoring of muscular activity and surface electromyography (sEMG) applications. The feasibility of graphene textiles in wearable muscular monitoring was successfully demonstrated by the acquisition of sEMG signals with wearable graphene textiles, and their performance was benchmarked against commercial, wet Ag/AgCl electrodes. Comparisons were performed in terms of signal-to-noise ratio (SNR), cross correlation and sensitivity to power-line interference. Despite their larger susceptibility to power line interference, graphene textile electrodes displayed excellent similarity with Ag/AgCl electrodes in terms of signal-to-noise ratio (SNR) and signal morphology; with correlation values reaching up to 97 % for sEMG signals acquired from the biceps brachii muscle.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在这项研究中,我们首次报道了用于监测肌肉活动和表面肌电图(sEMG)应用的可穿戴石墨烯纺织电极。通过使用可穿戴石墨烯纺织品采集表面肌电信号,成功证明了石墨烯纺织品用于可穿戴肌肉监测的可行性,并将其性能与商用湿式Ag/AgCl电极进行了基准测试。比较了信噪比(SNR)、相互关系和对电力线干扰的灵敏度。尽管石墨烯织物电极对电力线干扰的敏感性较大,但在信噪比(SNR)和信号形态方面,石墨烯织物电极与Ag/AgCl电极表现出极好的相似性;从肱二头肌获得的表面肌电信号的相关值高达97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Muscular Activity Monitoring and Surface Electromyography (sEMG) with Graphene Textiles
In this study, we report, for the first time, wearable graphene textile electrodes for monitoring of muscular activity and surface electromyography (sEMG) applications. The feasibility of graphene textiles in wearable muscular monitoring was successfully demonstrated by the acquisition of sEMG signals with wearable graphene textiles, and their performance was benchmarked against commercial, wet Ag/AgCl electrodes. Comparisons were performed in terms of signal-to-noise ratio (SNR), cross correlation and sensitivity to power-line interference. Despite their larger susceptibility to power line interference, graphene textile electrodes displayed excellent similarity with Ag/AgCl electrodes in terms of signal-to-noise ratio (SNR) and signal morphology; with correlation values reaching up to 97 % for sEMG signals acquired from the biceps brachii muscle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Legionella Species by Photogate-Type Optical Sensor A Nano-Watt Dual-Mode Address Detector for a Wi-Fi Enabled RF Wake-up Receiver Optical Feedback Interferometry imaging sensor for micrometric flow-patterns using continuous scanning DNN-based Outdoor NLOS Human Detection Using IEEE 802.11ac WLAN Signal Disconnect Switch Position Sensor Based on FBG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1