基于信息增益的rao - blackwelzed粒子滤波探索

C. Stachniss, G. Grisetti, Wolfram Burgard
{"title":"基于信息增益的rao - blackwelzed粒子滤波探索","authors":"C. Stachniss, G. Grisetti, Wolfram Burgard","doi":"10.15607/RSS.2005.I.009","DOIUrl":null,"url":null,"abstract":"This paper presents an integrated approach to exploration, mapping, and localization. Our algorithm uses a highly efficient Rao-Blackwellized particle filter to represent the posterior about maps and poses. It applies a decision-theoretic framework which simultaneously considers the uncertainty in the map and in the pose of the vehicle to evaluate potential actions. Thereby, it trades off the cost of executing an action with the expected information gain and takes into account possible sensor measurements gathered along the path taken by the robot. We furthermore describe how to utilize the properties of the Rao-Blackwellization to efficiently compute the expected information gain. We present experimental results obtained in the real world and in simulation to demonstrate the effectiveness of our approach.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"52 3 1","pages":"65-72"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"547","resultStr":"{\"title\":\"Information Gain-based Exploration Using Rao-Blackwellized Particle Filters\",\"authors\":\"C. Stachniss, G. Grisetti, Wolfram Burgard\",\"doi\":\"10.15607/RSS.2005.I.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an integrated approach to exploration, mapping, and localization. Our algorithm uses a highly efficient Rao-Blackwellized particle filter to represent the posterior about maps and poses. It applies a decision-theoretic framework which simultaneously considers the uncertainty in the map and in the pose of the vehicle to evaluate potential actions. Thereby, it trades off the cost of executing an action with the expected information gain and takes into account possible sensor measurements gathered along the path taken by the robot. We furthermore describe how to utilize the properties of the Rao-Blackwellization to efficiently compute the expected information gain. We present experimental results obtained in the real world and in simulation to demonstrate the effectiveness of our approach.\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\"52 3 1\",\"pages\":\"65-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"547\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2005.I.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 547

摘要

本文提出了一种综合的勘探、制图和定位方法。我们的算法使用一种高效的rao - blackwelzed粒子滤波器来表示关于地图和姿态的后验。它采用了一个决策理论框架,同时考虑了地图和车辆姿态的不确定性来评估潜在的行动。因此,它权衡了执行动作的成本和预期的信息增益,并考虑了机器人沿着路径收集的可能的传感器测量值。我们进一步描述了如何利用rao - blackwell化的特性来有效地计算期望信息增益。我们给出了在现实世界和模拟中获得的实验结果来证明我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information Gain-based Exploration Using Rao-Blackwellized Particle Filters
This paper presents an integrated approach to exploration, mapping, and localization. Our algorithm uses a highly efficient Rao-Blackwellized particle filter to represent the posterior about maps and poses. It applies a decision-theoretic framework which simultaneously considers the uncertainty in the map and in the pose of the vehicle to evaluate potential actions. Thereby, it trades off the cost of executing an action with the expected information gain and takes into account possible sensor measurements gathered along the path taken by the robot. We furthermore describe how to utilize the properties of the Rao-Blackwellization to efficiently compute the expected information gain. We present experimental results obtained in the real world and in simulation to demonstrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1