{"title":"Timoshenko-Ehrenfest纳米梁中的波传播:混合统一梯度理论","authors":"S. Faghidian, I. Elishakoff","doi":"10.1115/1.4055805","DOIUrl":null,"url":null,"abstract":"\n A size-dependent elasticity theory, founded on variationally consistent formulations, is developed to analyze the wave propagation in nano-sized beams. The mixture unified gradient theory of elasticity, integrating the stress gradient theory, the strain gradient model, and the traditional elasticity theory, is invoked to realize the size-effects at the ultra-small scale. Compatible with the kinematics of the Timoshenko–Ehrenfest beam, a stationary variational framework is established. The boundary-value problem of dynamic equilibrium along with the constitutive model is appropriately integrated into a single functional. Various generalized elasticity theories of gradient type are restored as particular cases of the developed mixture unified gradient theory. The flexural wave propagation is formulated within the context of the introduced size-dependent elasticity theory and the propagation characteristics of flexural waves are analytically addressed. The phase velocity of propagating waves in CNTs is inversely reconstructed and compared with the numerical simulation results. A viable approach to inversely determine the characteristic length-scale parameters associated with the generalized continuum theory is proposed. A comprehensive numerical study is performed to demonstrate the wave dispersion features in a Timoshenko–Ehrenfest nanobeam. Based on the presented wave propagation response and ensuing numerical illustrations, original benchmark for numerical analysis is detected.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"140 5 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Wave propagation in Timoshenko-Ehrenfest nanobeam: A mixture unified gradient theory\",\"authors\":\"S. Faghidian, I. Elishakoff\",\"doi\":\"10.1115/1.4055805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A size-dependent elasticity theory, founded on variationally consistent formulations, is developed to analyze the wave propagation in nano-sized beams. The mixture unified gradient theory of elasticity, integrating the stress gradient theory, the strain gradient model, and the traditional elasticity theory, is invoked to realize the size-effects at the ultra-small scale. Compatible with the kinematics of the Timoshenko–Ehrenfest beam, a stationary variational framework is established. The boundary-value problem of dynamic equilibrium along with the constitutive model is appropriately integrated into a single functional. Various generalized elasticity theories of gradient type are restored as particular cases of the developed mixture unified gradient theory. The flexural wave propagation is formulated within the context of the introduced size-dependent elasticity theory and the propagation characteristics of flexural waves are analytically addressed. The phase velocity of propagating waves in CNTs is inversely reconstructed and compared with the numerical simulation results. A viable approach to inversely determine the characteristic length-scale parameters associated with the generalized continuum theory is proposed. A comprehensive numerical study is performed to demonstrate the wave dispersion features in a Timoshenko–Ehrenfest nanobeam. Based on the presented wave propagation response and ensuing numerical illustrations, original benchmark for numerical analysis is detected.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"140 5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055805\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055805","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Wave propagation in Timoshenko-Ehrenfest nanobeam: A mixture unified gradient theory
A size-dependent elasticity theory, founded on variationally consistent formulations, is developed to analyze the wave propagation in nano-sized beams. The mixture unified gradient theory of elasticity, integrating the stress gradient theory, the strain gradient model, and the traditional elasticity theory, is invoked to realize the size-effects at the ultra-small scale. Compatible with the kinematics of the Timoshenko–Ehrenfest beam, a stationary variational framework is established. The boundary-value problem of dynamic equilibrium along with the constitutive model is appropriately integrated into a single functional. Various generalized elasticity theories of gradient type are restored as particular cases of the developed mixture unified gradient theory. The flexural wave propagation is formulated within the context of the introduced size-dependent elasticity theory and the propagation characteristics of flexural waves are analytically addressed. The phase velocity of propagating waves in CNTs is inversely reconstructed and compared with the numerical simulation results. A viable approach to inversely determine the characteristic length-scale parameters associated with the generalized continuum theory is proposed. A comprehensive numerical study is performed to demonstrate the wave dispersion features in a Timoshenko–Ehrenfest nanobeam. Based on the presented wave propagation response and ensuing numerical illustrations, original benchmark for numerical analysis is detected.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.