新型RGO-ZnWO4-Fe3O4电极材料在储能器件中的应用

M. Sadiq, P. Kalaignan
{"title":"新型RGO-ZnWO4-Fe3O4电极材料在储能器件中的应用","authors":"M. Sadiq, P. Kalaignan","doi":"10.11648/J.IJMSA.20190806.13","DOIUrl":null,"url":null,"abstract":"As the global concerns in the development of human civilization, the scientific and technological issues of energy utilization and environment protection are currently facing challenges. Nowadays, enormous energy demands of the world are mainly met by the non-renewable and environmental unfriendly fossil fuels. To replace the conventional energy platform, a pursuit of renewable and clean energy sources and carriers, including hydrogen storage, lithium batteries, and supercapacitors. Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. Herein, we report novel RGO-ZnWO4-Fe3O4 electrodes material can be synthesized using one step microwave irradiation technique and reported as an electrode material for supercapacitors applications. The surface morphology, chemical composition and electronic structure of the RGO-ZnWO4-Fe3O4 electrodes were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performance of the RGO-ZnWO4-Fe3O4 electrodes has been investigated using cyclic voltammetry (CV) techniques. The result reveals that a specific capacitance of 480 F/g, an energy density of 15 Wh/kg and power density of 1719.5 W/kg is observed over RGO-ZnWO4-Fe3O4 electrodes materials. The cost effective electrodes materials of RGO-ZnWO4-Fe3O4 can be useful for future electrochemical energy storage device applications.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel RGO-ZnWO4-Fe3O4 Electrodes Material for Energy Storage Device Applications\",\"authors\":\"M. Sadiq, P. Kalaignan\",\"doi\":\"10.11648/J.IJMSA.20190806.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the global concerns in the development of human civilization, the scientific and technological issues of energy utilization and environment protection are currently facing challenges. Nowadays, enormous energy demands of the world are mainly met by the non-renewable and environmental unfriendly fossil fuels. To replace the conventional energy platform, a pursuit of renewable and clean energy sources and carriers, including hydrogen storage, lithium batteries, and supercapacitors. Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. Herein, we report novel RGO-ZnWO4-Fe3O4 electrodes material can be synthesized using one step microwave irradiation technique and reported as an electrode material for supercapacitors applications. The surface morphology, chemical composition and electronic structure of the RGO-ZnWO4-Fe3O4 electrodes were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performance of the RGO-ZnWO4-Fe3O4 electrodes has been investigated using cyclic voltammetry (CV) techniques. The result reveals that a specific capacitance of 480 F/g, an energy density of 15 Wh/kg and power density of 1719.5 W/kg is observed over RGO-ZnWO4-Fe3O4 electrodes materials. The cost effective electrodes materials of RGO-ZnWO4-Fe3O4 can be useful for future electrochemical energy storage device applications.\",\"PeriodicalId\":14116,\"journal\":{\"name\":\"International Journal of Materials Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMSA.20190806.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMSA.20190806.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为人类文明发展的全球性课题,能源利用与环境保护的科技问题正面临挑战。当今世界巨大的能源需求主要由不可再生的、对环境不友好的化石燃料来满足。为了取代传统的能源平台,追求可再生和清洁的能源和载体,包括储氢、锂电池和超级电容器。电化学电容器,也称为超级电容器,通过离子吸附(电化学双层电容器)或快速表面氧化还原反应(伪电容器)来储存能量。当需要高功率传输或吸收时,它们可以补充或取代电能存储和收集应用中的电池。最近在电荷存储机制的理解和先进纳米结构材料的发展方面取得了显著的进步。在此,我们报道了一种新的RGO-ZnWO4-Fe3O4电极材料可以用一步微波辐照技术合成,并作为超级电容器的电极材料。采用x射线衍射(XRD)、透射电子显微镜(TEM)和x射线光电子能谱(XPS)技术对RGO-ZnWO4-Fe3O4电极的表面形貌、化学成分和电子结构进行了表征。采用循环伏安法(CV)研究了RGO-ZnWO4-Fe3O4电极的电化学性能。结果表明,RGO-ZnWO4-Fe3O4电极材料的比电容为480 F/g,能量密度为15 Wh/kg,功率密度为1719.5 W/kg。具有成本效益的RGO-ZnWO4-Fe3O4电极材料可用于未来的电化学储能装置应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel RGO-ZnWO4-Fe3O4 Electrodes Material for Energy Storage Device Applications
As the global concerns in the development of human civilization, the scientific and technological issues of energy utilization and environment protection are currently facing challenges. Nowadays, enormous energy demands of the world are mainly met by the non-renewable and environmental unfriendly fossil fuels. To replace the conventional energy platform, a pursuit of renewable and clean energy sources and carriers, including hydrogen storage, lithium batteries, and supercapacitors. Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. Herein, we report novel RGO-ZnWO4-Fe3O4 electrodes material can be synthesized using one step microwave irradiation technique and reported as an electrode material for supercapacitors applications. The surface morphology, chemical composition and electronic structure of the RGO-ZnWO4-Fe3O4 electrodes were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The electrochemical performance of the RGO-ZnWO4-Fe3O4 electrodes has been investigated using cyclic voltammetry (CV) techniques. The result reveals that a specific capacitance of 480 F/g, an energy density of 15 Wh/kg and power density of 1719.5 W/kg is observed over RGO-ZnWO4-Fe3O4 electrodes materials. The cost effective electrodes materials of RGO-ZnWO4-Fe3O4 can be useful for future electrochemical energy storage device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graphene Oxide Nanocarriers for Effective Drug Delivery in Breast Cancer Treatment Thermal Insulation of “akassa” Hot Preservation Baskets Using Cow Dung Coatings Review on Fundamental Considerations During Lignocellulosic Fiber Characterization in Light Micromechanical Analysis of Their Composites Surface Modification of Ti-6Al-4V Alloy by Polycaprolactone-Graphene Oxide Composite Coating Dielectric Relaxation, Electric Conductivity and Thermodynamic Studies on Epoxy Polyurethane Blend and Their Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1