Xiaojie Zhang, Yanrong Wang, Dianyin Hu, Rongqiao Wang
{"title":"一种考虑叶尖定时位置变化的叶片振动应力测定新方法","authors":"Xiaojie Zhang, Yanrong Wang, Dianyin Hu, Rongqiao Wang","doi":"10.1115/1.4062722","DOIUrl":null,"url":null,"abstract":"\n Blade Tip Timing (BTT) technology is concerned with the estimation of turbomachinery blade stress. The stress is determined from BTT data by relating the measured tip displacement to the stress via Finite Element (FE) models based on the sensing position. However, the correlation of BTT data with FE predictions involves a number of uncertainties. One of the main ones is the effective positions detected by sensors may deviate from their nominal position due to the blade deformation, which will yield deceptive calibration factors. To deal with this problem, a novel method based on the amplitude ratio and virtual displacement optimization under the distance constraints of sensors installed in different axial positions is proposed to determine the accuracy calibration factors and sensing positions. It realizes the identification of sensing positions without the information of static deformation, and overcomes the inapplicability of the corrected displacement to bending modes. Both synchronous and asynchronous vibrations of five typical vibration modes are discussed to illustrate the applicability of this method. The results show that this method has better performance than traditional method. The prediction errors of bending modes are reduced from 20~30% to 7%, and the maximum error of other modes is reduced from 72% to 23%. In addition, sensitivity analysis is performed to investigate the influence of vibration levels and mode shape inaccuracies. Results demonstrate the great potential of this method in vibration stress determination.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"31 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for the determination of blade vibration stress considering the change in blade tip timing sensing position\",\"authors\":\"Xiaojie Zhang, Yanrong Wang, Dianyin Hu, Rongqiao Wang\",\"doi\":\"10.1115/1.4062722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Blade Tip Timing (BTT) technology is concerned with the estimation of turbomachinery blade stress. The stress is determined from BTT data by relating the measured tip displacement to the stress via Finite Element (FE) models based on the sensing position. However, the correlation of BTT data with FE predictions involves a number of uncertainties. One of the main ones is the effective positions detected by sensors may deviate from their nominal position due to the blade deformation, which will yield deceptive calibration factors. To deal with this problem, a novel method based on the amplitude ratio and virtual displacement optimization under the distance constraints of sensors installed in different axial positions is proposed to determine the accuracy calibration factors and sensing positions. It realizes the identification of sensing positions without the information of static deformation, and overcomes the inapplicability of the corrected displacement to bending modes. Both synchronous and asynchronous vibrations of five typical vibration modes are discussed to illustrate the applicability of this method. The results show that this method has better performance than traditional method. The prediction errors of bending modes are reduced from 20~30% to 7%, and the maximum error of other modes is reduced from 72% to 23%. In addition, sensitivity analysis is performed to investigate the influence of vibration levels and mode shape inaccuracies. Results demonstrate the great potential of this method in vibration stress determination.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062722\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062722","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
A novel method for the determination of blade vibration stress considering the change in blade tip timing sensing position
Blade Tip Timing (BTT) technology is concerned with the estimation of turbomachinery blade stress. The stress is determined from BTT data by relating the measured tip displacement to the stress via Finite Element (FE) models based on the sensing position. However, the correlation of BTT data with FE predictions involves a number of uncertainties. One of the main ones is the effective positions detected by sensors may deviate from their nominal position due to the blade deformation, which will yield deceptive calibration factors. To deal with this problem, a novel method based on the amplitude ratio and virtual displacement optimization under the distance constraints of sensors installed in different axial positions is proposed to determine the accuracy calibration factors and sensing positions. It realizes the identification of sensing positions without the information of static deformation, and overcomes the inapplicability of the corrected displacement to bending modes. Both synchronous and asynchronous vibrations of five typical vibration modes are discussed to illustrate the applicability of this method. The results show that this method has better performance than traditional method. The prediction errors of bending modes are reduced from 20~30% to 7%, and the maximum error of other modes is reduced from 72% to 23%. In addition, sensitivity analysis is performed to investigate the influence of vibration levels and mode shape inaccuracies. Results demonstrate the great potential of this method in vibration stress determination.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.