{"title":"评估工程问题的机器学习模型","authors":"Yoram Reich , S.V. Barai","doi":"10.1016/S0954-1810(98)00021-1","DOIUrl":null,"url":null,"abstract":"<div><p>The use of machine learning (ML), and in particular, artificial neural networks (ANN), in engineering applications has increased dramatically over the last years. However, by and large, the development of such applications or their report lack proper evaluation. Deficient evaluation practice was observed in the general neural networks community and again in engineering applications through a survey we conducted of articles published in AI in Engineering and elsewhere. This status hinders understanding and prevents progress. This article goal is to remedy this situation. First, several evaluation methods are discussed with their relative qualities. Second, these qualities are illustrated by using the methods to evaluate ANN performance in two engineering problems. Third, a systematic evaluation procedure for ML is discussed. This procedure will lead to better evaluation of studies, and consequently to improved research and practice in the area of ML in engineering applications.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 3","pages":"Pages 257-272"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(98)00021-1","citationCount":"148","resultStr":"{\"title\":\"Evaluating machine learning models for engineering problems\",\"authors\":\"Yoram Reich , S.V. Barai\",\"doi\":\"10.1016/S0954-1810(98)00021-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of machine learning (ML), and in particular, artificial neural networks (ANN), in engineering applications has increased dramatically over the last years. However, by and large, the development of such applications or their report lack proper evaluation. Deficient evaluation practice was observed in the general neural networks community and again in engineering applications through a survey we conducted of articles published in AI in Engineering and elsewhere. This status hinders understanding and prevents progress. This article goal is to remedy this situation. First, several evaluation methods are discussed with their relative qualities. Second, these qualities are illustrated by using the methods to evaluate ANN performance in two engineering problems. Third, a systematic evaluation procedure for ML is discussed. This procedure will lead to better evaluation of studies, and consequently to improved research and practice in the area of ML in engineering applications.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":\"13 3\",\"pages\":\"Pages 257-272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(98)00021-1\",\"citationCount\":\"148\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181098000211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181098000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148
摘要
过去几年,机器学习(ML),特别是人工神经网络(ANN)在工程应用中的应用急剧增加。然而,总的来说,这些应用程序的开发或它们的报告缺乏适当的评估。通过我们对发表在《AI in engineering》和其他地方的文章进行的调查,在一般神经网络社区和工程应用中观察到缺乏评估实践。这种状态阻碍了理解并阻碍了进步。本文的目标就是纠正这种情况。首先,讨论了几种评价方法及其相对优劣。其次,通过评价人工神经网络在两个工程问题中的性能来说明这些特性。第三,讨论了机器学习的系统评价方法。这一过程将导致更好的研究评估,从而提高机器学习在工程应用领域的研究和实践。
Evaluating machine learning models for engineering problems
The use of machine learning (ML), and in particular, artificial neural networks (ANN), in engineering applications has increased dramatically over the last years. However, by and large, the development of such applications or their report lack proper evaluation. Deficient evaluation practice was observed in the general neural networks community and again in engineering applications through a survey we conducted of articles published in AI in Engineering and elsewhere. This status hinders understanding and prevents progress. This article goal is to remedy this situation. First, several evaluation methods are discussed with their relative qualities. Second, these qualities are illustrated by using the methods to evaluate ANN performance in two engineering problems. Third, a systematic evaluation procedure for ML is discussed. This procedure will lead to better evaluation of studies, and consequently to improved research and practice in the area of ML in engineering applications.