{"title":"解渴剂","authors":"C. Kelly","doi":"10.1115/1.2020-jul2","DOIUrl":null,"url":null,"abstract":"\n Scientists are developing a wide variety of technologies to solve the urgent problem of water shortages across the world. In fact, many have been working for decades on finding better and more economical ways to turn non-traditional sources of water into potable water for drinking and cooking. This article focus on early-stage research and development of energy-efficient and cost-competitive technologies to tap nontraditional water sources for a variety of uses.","PeriodicalId":18406,"journal":{"name":"Mechanical Engineering","volume":"63 1","pages":"46-51"},"PeriodicalIF":2.1000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Thirst Quenchers\",\"authors\":\"C. Kelly\",\"doi\":\"10.1115/1.2020-jul2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Scientists are developing a wide variety of technologies to solve the urgent problem of water shortages across the world. In fact, many have been working for decades on finding better and more economical ways to turn non-traditional sources of water into potable water for drinking and cooking. This article focus on early-stage research and development of energy-efficient and cost-competitive technologies to tap nontraditional water sources for a variety of uses.\",\"PeriodicalId\":18406,\"journal\":{\"name\":\"Mechanical Engineering\",\"volume\":\"63 1\",\"pages\":\"46-51\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.2020-jul2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.2020-jul2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Scientists are developing a wide variety of technologies to solve the urgent problem of water shortages across the world. In fact, many have been working for decades on finding better and more economical ways to turn non-traditional sources of water into potable water for drinking and cooking. This article focus on early-stage research and development of energy-efficient and cost-competitive technologies to tap nontraditional water sources for a variety of uses.