deep - fff微流控装置中微粒路径的建模

B. Mathew, A. Alazzam, Mohammad Abutayeh, I. Stiharu
{"title":"deep - fff微流控装置中微粒路径的建模","authors":"B. Mathew, A. Alazzam, Mohammad Abutayeh, I. Stiharu","doi":"10.1109/RSM.2015.7354997","DOIUrl":null,"url":null,"abstract":"This article documents the development of a dynamic model for predicting the trajectory of microparticles in a DEP-FFF microfluidic device. The electrode configuration is such that the top and bottom surfaces support multiple finite sized electrodes in the range of few micrometers. The electric potential inside the microchannel takes the form of Laplace equation while the equations of motion are based on Newton's second law. The forces considered include that due to inertia, drag, gravity, buoyancy and dielectrophoresis. All governing equations are solved using finite difference method with a spatial step size of 0.5 μm and temporal step size of 10-4s. In addition, a parametric study is carried out in order to understand the individual influence of operating and geometric parameters on the path of microparticles. The parameters considered include microparticle radius, actuation voltage, volumetric flow rate and microchannel height. It is found that all parameters influence the transient trajectory of microparticles while only a few parameters influence the final levitation height of microparticles.","PeriodicalId":6667,"journal":{"name":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"11 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling microparticles' path in DEP-FFF microfludic devices\",\"authors\":\"B. Mathew, A. Alazzam, Mohammad Abutayeh, I. Stiharu\",\"doi\":\"10.1109/RSM.2015.7354997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article documents the development of a dynamic model for predicting the trajectory of microparticles in a DEP-FFF microfluidic device. The electrode configuration is such that the top and bottom surfaces support multiple finite sized electrodes in the range of few micrometers. The electric potential inside the microchannel takes the form of Laplace equation while the equations of motion are based on Newton's second law. The forces considered include that due to inertia, drag, gravity, buoyancy and dielectrophoresis. All governing equations are solved using finite difference method with a spatial step size of 0.5 μm and temporal step size of 10-4s. In addition, a parametric study is carried out in order to understand the individual influence of operating and geometric parameters on the path of microparticles. The parameters considered include microparticle radius, actuation voltage, volumetric flow rate and microchannel height. It is found that all parameters influence the transient trajectory of microparticles while only a few parameters influence the final levitation height of microparticles.\",\"PeriodicalId\":6667,\"journal\":{\"name\":\"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"volume\":\"11 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2015.7354997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2015.7354997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文记录了用于预测deep - fff微流控装置中微粒轨迹的动态模型的发展。电极结构是这样的,顶部和底部表面支持多个有限尺寸的电极在几微米的范围内。微通道内的电势采用拉普拉斯方程的形式,运动方程采用牛顿第二定律的形式。所考虑的力包括惯性、阻力、重力、浮力和介质电泳。所有控制方程均采用有限差分法求解,空间步长为0.5 μm,时间步长为10-4s。此外,还进行了参数化研究,以了解操作参数和几何参数对微粒路径的个别影响。考虑的参数包括微粒半径、驱动电压、体积流量和微通道高度。结果表明,所有参数都影响微粒的瞬态轨迹,只有少数参数影响微粒的最终悬浮高度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling microparticles' path in DEP-FFF microfludic devices
This article documents the development of a dynamic model for predicting the trajectory of microparticles in a DEP-FFF microfluidic device. The electrode configuration is such that the top and bottom surfaces support multiple finite sized electrodes in the range of few micrometers. The electric potential inside the microchannel takes the form of Laplace equation while the equations of motion are based on Newton's second law. The forces considered include that due to inertia, drag, gravity, buoyancy and dielectrophoresis. All governing equations are solved using finite difference method with a spatial step size of 0.5 μm and temporal step size of 10-4s. In addition, a parametric study is carried out in order to understand the individual influence of operating and geometric parameters on the path of microparticles. The parameters considered include microparticle radius, actuation voltage, volumetric flow rate and microchannel height. It is found that all parameters influence the transient trajectory of microparticles while only a few parameters influence the final levitation height of microparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation on Optical Interconnect(OI) link performance using external modulator Modeling and simulation of polysilicon piezoresistors in a CMOS-MEMS resonator for mass detection FPGA-based hardware-in-the-loop verification of dual-stage HDD head position control A comparative study of photocurable sensing membrane for Potassium ChemFET sensor The vertical strained impact ionization MOSFET (VESIMOS) for ultra-sensitive biosensor application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1