用脑电图识别左、右手运动图像

Atanu Dey, S. Bhattacharjee, D. Samanta
{"title":"用脑电图识别左、右手运动图像","authors":"Atanu Dey, S. Bhattacharjee, D. Samanta","doi":"10.1109/RTEICT.2016.7807856","DOIUrl":null,"url":null,"abstract":"Brain computer interface (BCI) is one of the recent trends for the development of electroencephalogram (EEG) signal based, a human controlling device for a motor disable person. This paper aims to detect the left and right hand movement of motor disable person using EEG signals with the usage of Independent component analysis (ICA) technique and support vector machine (SVM) classifier. For signal classification, the amalgamations of the frequency domain and time domain features are used. The proposed system obtains an accuracy of 83% to 90% by using the standard publicly available EEG database, where some existing methods are implemented on the same datasets to detect same, there are obtaining less than 80% accuracy.","PeriodicalId":6527,"journal":{"name":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"8 1","pages":"426-430"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Recognition of motor imagery left and right hand movement using EEG\",\"authors\":\"Atanu Dey, S. Bhattacharjee, D. Samanta\",\"doi\":\"10.1109/RTEICT.2016.7807856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain computer interface (BCI) is one of the recent trends for the development of electroencephalogram (EEG) signal based, a human controlling device for a motor disable person. This paper aims to detect the left and right hand movement of motor disable person using EEG signals with the usage of Independent component analysis (ICA) technique and support vector machine (SVM) classifier. For signal classification, the amalgamations of the frequency domain and time domain features are used. The proposed system obtains an accuracy of 83% to 90% by using the standard publicly available EEG database, where some existing methods are implemented on the same datasets to detect same, there are obtaining less than 80% accuracy.\",\"PeriodicalId\":6527,\"journal\":{\"name\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"volume\":\"8 1\",\"pages\":\"426-430\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT.2016.7807856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2016.7807856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

脑机接口(BCI)是近年来基于脑电图(EEG)信号的人体控制装置之一,是一种针对运动障碍者的人体控制装置。本文利用独立分量分析(ICA)技术和支持向量机(SVM)分类器,利用脑电信号检测运动残疾人的左右运动。对于信号的分类,使用频域和时域特征的合并。该系统采用标准的公开的EEG数据库进行检测,准确率在83% ~ 90%之间,而现有的方法在相同的数据集上进行检测,准确率在80%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of motor imagery left and right hand movement using EEG
Brain computer interface (BCI) is one of the recent trends for the development of electroencephalogram (EEG) signal based, a human controlling device for a motor disable person. This paper aims to detect the left and right hand movement of motor disable person using EEG signals with the usage of Independent component analysis (ICA) technique and support vector machine (SVM) classifier. For signal classification, the amalgamations of the frequency domain and time domain features are used. The proposed system obtains an accuracy of 83% to 90% by using the standard publicly available EEG database, where some existing methods are implemented on the same datasets to detect same, there are obtaining less than 80% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
I-Vector based depression level estimation technique A trust model in cloud computing based on fuzzy logic Time dispersion parameters for single bounce 2D geometrical channel including rain fading effect Information retrieval system using UNL for multilingual question answering Face recognition with CLNF for uncontrolled occlusion faces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1