{"title":"从溶剂变色位移数据估计酞菁锌的基态和激发态偶极矩","authors":"A. Ogunsipe","doi":"10.14419/IJAC.V6I2.11019","DOIUrl":null,"url":null,"abstract":"A semi-empirical determination of ground and excited state dipole moments of zinc phthalocyanine (ZnPc) from solvatochromic shifts is hereby presented. The ratio of the excited- and ground-state dipole moments of ZnPc ( ) was estimated by a combination of the Bakshiev and the Kawski-Chamma-Viallet’s equations, while the difference in the excited- and ground-state dipole moments (Dm) was estimated usingthe molecular-microscopic solvent polarity parameters ( ), alongside the Stokes’ shifts (Dῡ) in the various solvents. The dipole moment of ZnPc is significantly higher in the excited singlet state (me = 3.12 D) than in the ground state (mg = 1.50 D). Obviously charge separation is greater in the excited state of ZnPc than in its ground state. ","PeriodicalId":13723,"journal":{"name":"International Journal of Advanced Chemistry","volume":"86 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-empirical estimation of ground and excited state dipole moments of zinc phthalocyanine from solvatochromic shift data\",\"authors\":\"A. Ogunsipe\",\"doi\":\"10.14419/IJAC.V6I2.11019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A semi-empirical determination of ground and excited state dipole moments of zinc phthalocyanine (ZnPc) from solvatochromic shifts is hereby presented. The ratio of the excited- and ground-state dipole moments of ZnPc ( ) was estimated by a combination of the Bakshiev and the Kawski-Chamma-Viallet’s equations, while the difference in the excited- and ground-state dipole moments (Dm) was estimated usingthe molecular-microscopic solvent polarity parameters ( ), alongside the Stokes’ shifts (Dῡ) in the various solvents. The dipole moment of ZnPc is significantly higher in the excited singlet state (me = 3.12 D) than in the ground state (mg = 1.50 D). Obviously charge separation is greater in the excited state of ZnPc than in its ground state. \",\"PeriodicalId\":13723,\"journal\":{\"name\":\"International Journal of Advanced Chemistry\",\"volume\":\"86 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/IJAC.V6I2.11019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/IJAC.V6I2.11019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A semi-empirical estimation of ground and excited state dipole moments of zinc phthalocyanine from solvatochromic shift data
A semi-empirical determination of ground and excited state dipole moments of zinc phthalocyanine (ZnPc) from solvatochromic shifts is hereby presented. The ratio of the excited- and ground-state dipole moments of ZnPc ( ) was estimated by a combination of the Bakshiev and the Kawski-Chamma-Viallet’s equations, while the difference in the excited- and ground-state dipole moments (Dm) was estimated usingthe molecular-microscopic solvent polarity parameters ( ), alongside the Stokes’ shifts (Dῡ) in the various solvents. The dipole moment of ZnPc is significantly higher in the excited singlet state (me = 3.12 D) than in the ground state (mg = 1.50 D). Obviously charge separation is greater in the excited state of ZnPc than in its ground state.