Dibson D. Gondim , Khaleel I. Al-Obaidy , Muhammad T. Idrees , John N. Eble , Liang Cheng
{"title":"基于人工智能的肾肿瘤多类别组织病理分类","authors":"Dibson D. Gondim , Khaleel I. Al-Obaidy , Muhammad T. Idrees , John N. Eble , Liang Cheng","doi":"10.1016/j.jpi.2023.100299","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI)-based techniques are increasingly being explored as an emerging ancillary technique for improving accuracy and reproducibility of histopathological diagnosis. Renal cell carcinoma (RCC) is a malignancy responsible for 2% of cancer deaths worldwide. Given that RCC is a heterogenous disease, accurate histopathological classification is essential to separate aggressive subtypes from indolent ones and benign mimickers. There are early promising results using AI for RCC classification to distinguish between 2 and 3 subtypes of RCC. However, it is not clear how an AI-based model designed for multiple subtypes of RCCs, and benign mimickers would perform which is a scenario closer to the real practice of pathology. A computational model was created using 252 whole slide images (WSI) (clear cell RCC: 56, papillary RCC: 81, chromophobe RCC: 51, clear cell papillary RCC: 39, and, metanephric adenoma: 6). 298,071 patches were used to develop the AI-based image classifier. 298,071 patches (350 × 350-pixel) were used to develop the AI-based image classifier. The model was applied to a secondary dataset and demonstrated that 47/55 (85%) WSIs were correctly classified. This computational model showed excellent results except to distinguish clear cell RCC from clear cell papillary RCC. Further validation using multi-institutional large datasets and prospective studies are needed to determine the potential to translation to clinical practice.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"14 ","pages":"Article 100299"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006494/pdf/main.pdf","citationCount":"2","resultStr":"{\"title\":\"Artificial intelligence-based multi-class histopathologic classification of kidney neoplasms\",\"authors\":\"Dibson D. Gondim , Khaleel I. Al-Obaidy , Muhammad T. Idrees , John N. Eble , Liang Cheng\",\"doi\":\"10.1016/j.jpi.2023.100299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial intelligence (AI)-based techniques are increasingly being explored as an emerging ancillary technique for improving accuracy and reproducibility of histopathological diagnosis. Renal cell carcinoma (RCC) is a malignancy responsible for 2% of cancer deaths worldwide. Given that RCC is a heterogenous disease, accurate histopathological classification is essential to separate aggressive subtypes from indolent ones and benign mimickers. There are early promising results using AI for RCC classification to distinguish between 2 and 3 subtypes of RCC. However, it is not clear how an AI-based model designed for multiple subtypes of RCCs, and benign mimickers would perform which is a scenario closer to the real practice of pathology. A computational model was created using 252 whole slide images (WSI) (clear cell RCC: 56, papillary RCC: 81, chromophobe RCC: 51, clear cell papillary RCC: 39, and, metanephric adenoma: 6). 298,071 patches were used to develop the AI-based image classifier. 298,071 patches (350 × 350-pixel) were used to develop the AI-based image classifier. The model was applied to a secondary dataset and demonstrated that 47/55 (85%) WSIs were correctly classified. This computational model showed excellent results except to distinguish clear cell RCC from clear cell papillary RCC. Further validation using multi-institutional large datasets and prospective studies are needed to determine the potential to translation to clinical practice.</p></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"14 \",\"pages\":\"Article 100299\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006494/pdf/main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S215335392300113X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S215335392300113X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Artificial intelligence-based multi-class histopathologic classification of kidney neoplasms
Artificial intelligence (AI)-based techniques are increasingly being explored as an emerging ancillary technique for improving accuracy and reproducibility of histopathological diagnosis. Renal cell carcinoma (RCC) is a malignancy responsible for 2% of cancer deaths worldwide. Given that RCC is a heterogenous disease, accurate histopathological classification is essential to separate aggressive subtypes from indolent ones and benign mimickers. There are early promising results using AI for RCC classification to distinguish between 2 and 3 subtypes of RCC. However, it is not clear how an AI-based model designed for multiple subtypes of RCCs, and benign mimickers would perform which is a scenario closer to the real practice of pathology. A computational model was created using 252 whole slide images (WSI) (clear cell RCC: 56, papillary RCC: 81, chromophobe RCC: 51, clear cell papillary RCC: 39, and, metanephric adenoma: 6). 298,071 patches were used to develop the AI-based image classifier. 298,071 patches (350 × 350-pixel) were used to develop the AI-based image classifier. The model was applied to a secondary dataset and demonstrated that 47/55 (85%) WSIs were correctly classified. This computational model showed excellent results except to distinguish clear cell RCC from clear cell papillary RCC. Further validation using multi-institutional large datasets and prospective studies are needed to determine the potential to translation to clinical practice.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.