应用gpu实现Smith-Waterman序列对齐加速

Phong H. Pham, N. Duong, N. M. Ta, Cuong Q.Tran, D. Nguyen, T. Nguyen, H. D. Le
{"title":"应用gpu实现Smith-Waterman序列对齐加速","authors":"Phong H. Pham, N. Duong, N. M. Ta, Cuong Q.Tran, D. Nguyen, T. Nguyen, H. D. Le","doi":"10.5176/2010-2283_1.2.56","DOIUrl":null,"url":null,"abstract":"The Smith-Waterman algorithm is a common local sequence alignment method which gives a high accuracy. However, it needs a high capacity of computation and a large amount of storage memory, so implementations based on common computing systems are impractical. Here, we present our implementation of the Smith-Waterman algorithm on a cluster including graphics cards (GPU cluster) – swGPUCluster. The algorithm implementation is tested on a cluster of two nodes: a node is equipped with two dual graphics cards NVIDIA GeForce GTX 295, the other node includes a dual graphics cards NVIDIA GeForce 295 and a Tesla C1060 card. Depending on the length of query sequences, the swGPUCluster performance increases from 37.33 GCUPS to 46.71 GCUPS. This result demonstrates the great computing power of GPUs and their high applicability in the bioinformatics field.","PeriodicalId":91079,"journal":{"name":"GSTF international journal on computing","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Applying GPUs for Smith-Waterman Sequence Alignment Acceleration\",\"authors\":\"Phong H. Pham, N. Duong, N. M. Ta, Cuong Q.Tran, D. Nguyen, T. Nguyen, H. D. Le\",\"doi\":\"10.5176/2010-2283_1.2.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Smith-Waterman algorithm is a common local sequence alignment method which gives a high accuracy. However, it needs a high capacity of computation and a large amount of storage memory, so implementations based on common computing systems are impractical. Here, we present our implementation of the Smith-Waterman algorithm on a cluster including graphics cards (GPU cluster) – swGPUCluster. The algorithm implementation is tested on a cluster of two nodes: a node is equipped with two dual graphics cards NVIDIA GeForce GTX 295, the other node includes a dual graphics cards NVIDIA GeForce 295 and a Tesla C1060 card. Depending on the length of query sequences, the swGPUCluster performance increases from 37.33 GCUPS to 46.71 GCUPS. This result demonstrates the great computing power of GPUs and their high applicability in the bioinformatics field.\",\"PeriodicalId\":91079,\"journal\":{\"name\":\"GSTF international journal on computing\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSTF international journal on computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5176/2010-2283_1.2.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSTF international journal on computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5176/2010-2283_1.2.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Smith-Waterman算法是一种常用的局部序列比对方法,具有较高的精度。然而,它需要高计算能力和大量的存储内存,因此基于普通计算系统的实现是不切实际的。在这里,我们展示了Smith-Waterman算法在一个包含显卡(GPU集群)的集群上的实现——swGPUCluster。算法实现在两个节点的集群上进行测试:一个节点配备了两个NVIDIA GeForce GTX 295双显卡,另一个节点包括一个NVIDIA GeForce 295双显卡和一个Tesla C1060卡。根据查询序列的长度,swgucluster的性能从37.33 GCUPS增加到46.71 GCUPS。这一结果证明了gpu的强大计算能力及其在生物信息学领域的高适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying GPUs for Smith-Waterman Sequence Alignment Acceleration
The Smith-Waterman algorithm is a common local sequence alignment method which gives a high accuracy. However, it needs a high capacity of computation and a large amount of storage memory, so implementations based on common computing systems are impractical. Here, we present our implementation of the Smith-Waterman algorithm on a cluster including graphics cards (GPU cluster) – swGPUCluster. The algorithm implementation is tested on a cluster of two nodes: a node is equipped with two dual graphics cards NVIDIA GeForce GTX 295, the other node includes a dual graphics cards NVIDIA GeForce 295 and a Tesla C1060 card. Depending on the length of query sequences, the swGPUCluster performance increases from 37.33 GCUPS to 46.71 GCUPS. This result demonstrates the great computing power of GPUs and their high applicability in the bioinformatics field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cognitive Computing supported Medical Decision Support System for Patient’s Driving Assessment Propaganda Barometer : A Supportive Tool to Improve Media Literacy Towards Building a Critically Thinking Society A framework for the adoption of bring your own device (BYOD) in the hospital environment On developing adaptive vocabulary learning game for children with an early language delay Stroke Cognitive Medical Assistant (StrokeCMA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1