用数据驱动的难度估计缓解自适应学习中的冷启动问题

Maarten van der Velde, Florian Sense, J. Borst, H. van Rijn
{"title":"用数据驱动的难度估计缓解自适应学习中的冷启动问题","authors":"Maarten van der Velde, Florian Sense, J. Borst, H. van Rijn","doi":"10.31234/osf.io/hf2vw","DOIUrl":null,"url":null,"abstract":"An adaptive learning system offers a digital learning environment that adjusts itself to the individual learner and learning material. By refining its internal model of the learner and material over time, such a system continually improves its ability to present appropriate exercises that maximise learning gains. In many cases, there is an initial mismatch between the internal model and the learner’s actual performance on the presented items, causing a “cold start” during which the system is poorly adjusted to the situation. In this study, we implemented several strategies for mitigating this cold start problem in an adaptive fact learning system and experimentally tested their effect on learning performance. The strategies included predicting difficulty for individual learner-fact pairs, individual learners, individual facts, and the set of facts as a whole. We found that cold start mitigation improved learning outcomes, provided that there was sufficient variability in the difficulty of the study material. Informed individualised predictions allowed the system to schedule learners’ study time more effectively, leading to an increase in response accuracy during the learning session as well as improved retention of the studied items afterwards. Our findings show that addressing the cold start problem in adaptive learning systems can have a real impact on learning outcomes. We expect this to be particularly valuable in real-world educational settings with large individual differences between learners and highly diverse materials.","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"10 1","pages":"231-249"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Alleviating the Cold Start Problem in Adaptive Learning using Data-Driven Difficulty Estimates\",\"authors\":\"Maarten van der Velde, Florian Sense, J. Borst, H. van Rijn\",\"doi\":\"10.31234/osf.io/hf2vw\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive learning system offers a digital learning environment that adjusts itself to the individual learner and learning material. By refining its internal model of the learner and material over time, such a system continually improves its ability to present appropriate exercises that maximise learning gains. In many cases, there is an initial mismatch between the internal model and the learner’s actual performance on the presented items, causing a “cold start” during which the system is poorly adjusted to the situation. In this study, we implemented several strategies for mitigating this cold start problem in an adaptive fact learning system and experimentally tested their effect on learning performance. The strategies included predicting difficulty for individual learner-fact pairs, individual learners, individual facts, and the set of facts as a whole. We found that cold start mitigation improved learning outcomes, provided that there was sufficient variability in the difficulty of the study material. Informed individualised predictions allowed the system to schedule learners’ study time more effectively, leading to an increase in response accuracy during the learning session as well as improved retention of the studied items afterwards. Our findings show that addressing the cold start problem in adaptive learning systems can have a real impact on learning outcomes. We expect this to be particularly valuable in real-world educational settings with large individual differences between learners and highly diverse materials.\",\"PeriodicalId\":72660,\"journal\":{\"name\":\"Computational brain & behavior\",\"volume\":\"10 1\",\"pages\":\"231-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational brain & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31234/osf.io/hf2vw\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31234/osf.io/hf2vw","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

一个自适应学习系统提供了一个数字化的学习环境,它可以根据个人学习者和学习材料进行自我调整。随着时间的推移,通过完善学习者和材料的内部模型,这种系统不断提高其呈现适当练习的能力,从而最大限度地提高学习效果。在许多情况下,内部模型与学习者在所呈现项目上的实际表现之间最初存在不匹配,导致系统无法适应情况的“冷启动”。在本研究中,我们在自适应事实学习系统中实施了几种缓解冷启动问题的策略,并通过实验测试了它们对学习性能的影响。这些策略包括预测个体学习者-事实对、个体学习者、个体事实和整体事实集的难度。我们发现,如果学习材料的难度有足够的可变性,冷启动缓解可以改善学习效果。知情的个性化预测使系统能够更有效地安排学习者的学习时间,从而提高了学习期间的反应准确性,并提高了学习后对所学内容的记忆。我们的研究结果表明,解决自适应学习系统中的冷启动问题可以对学习结果产生真正的影响。我们希望这在现实世界的教育环境中特别有价值,因为学习者之间存在很大的个体差异,材料也高度多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alleviating the Cold Start Problem in Adaptive Learning using Data-Driven Difficulty Estimates
An adaptive learning system offers a digital learning environment that adjusts itself to the individual learner and learning material. By refining its internal model of the learner and material over time, such a system continually improves its ability to present appropriate exercises that maximise learning gains. In many cases, there is an initial mismatch between the internal model and the learner’s actual performance on the presented items, causing a “cold start” during which the system is poorly adjusted to the situation. In this study, we implemented several strategies for mitigating this cold start problem in an adaptive fact learning system and experimentally tested their effect on learning performance. The strategies included predicting difficulty for individual learner-fact pairs, individual learners, individual facts, and the set of facts as a whole. We found that cold start mitigation improved learning outcomes, provided that there was sufficient variability in the difficulty of the study material. Informed individualised predictions allowed the system to schedule learners’ study time more effectively, leading to an increase in response accuracy during the learning session as well as improved retention of the studied items afterwards. Our findings show that addressing the cold start problem in adaptive learning systems can have a real impact on learning outcomes. We expect this to be particularly valuable in real-world educational settings with large individual differences between learners and highly diverse materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Individual Variability in Neural Control Circuit Regulation Using Single-Subject fMRI Towards Dependent Race Models for the Stop-Signal Paradigm Modeling Time Cell Neuron-Level Dynamics Probabilistic Choice Induced by Strength of Preference An Extension and Clinical Application of the SIMPLE Model to the Free Recall of Repeated and Semantically Related Items
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1