直流微电网故障识别与隔离保护算法

N. N. Reddy, Rajesh Velpula, P. Raja, S. Moorthi
{"title":"直流微电网故障识别与隔离保护算法","authors":"N. N. Reddy, Rajesh Velpula, P. Raja, S. Moorthi","doi":"10.13052/dgaej2156-3306.38214","DOIUrl":null,"url":null,"abstract":"In renewable energy dominated distributed ring configuration direct current (DC) networks, the protection philosophy is one of the critical challenging task. It is due to the existence of power electronic converters and erratic attributes of distributed energy sources. Consequently, conventional current direction based as well as over current protection strategies is not applicable for DC microgrids. In this paper, protection algorithm for fault recognition and isolation of faulty line is presented based on the polarity of change in inductance immediately after fault inception. The voltage and current sample information is used to determine the parameter by employing the least square estimation (LSE) technique. The efficiency of the proposed method is tested for internal and external faults, the impact of fault resistance and fault location, different system configurations, and load change conditions in MATLAB/Simulink simulation. It is noted that proposed method would categorize internal and external faults perfectly. The operating time of the proposed protection method is comparatively less than the existing methods. It also improves selectivity, security, and reliability under above mentioned abnormal cases.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protection Algorithm for Fault Identification and Isolation in DC Microgrid\",\"authors\":\"N. N. Reddy, Rajesh Velpula, P. Raja, S. Moorthi\",\"doi\":\"10.13052/dgaej2156-3306.38214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In renewable energy dominated distributed ring configuration direct current (DC) networks, the protection philosophy is one of the critical challenging task. It is due to the existence of power electronic converters and erratic attributes of distributed energy sources. Consequently, conventional current direction based as well as over current protection strategies is not applicable for DC microgrids. In this paper, protection algorithm for fault recognition and isolation of faulty line is presented based on the polarity of change in inductance immediately after fault inception. The voltage and current sample information is used to determine the parameter by employing the least square estimation (LSE) technique. The efficiency of the proposed method is tested for internal and external faults, the impact of fault resistance and fault location, different system configurations, and load change conditions in MATLAB/Simulink simulation. It is noted that proposed method would categorize internal and external faults perfectly. The operating time of the proposed protection method is comparatively less than the existing methods. It also improves selectivity, security, and reliability under above mentioned abnormal cases.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.38214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.38214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在以可再生能源为主的分布式环组态直流网络中,保护理念是一项关键的挑战性任务。这是由于电力电子变流器的存在和分布式能源的不稳定特性造成的。因此,传统的基于电流方向和过流保护策略不适用于直流微电网。本文提出了一种基于故障发生后立即电感变化极性的故障线识别与隔离保护算法。采用最小二乘估计(LSE)技术,利用电压和电流样本信息确定参数。在MATLAB/Simulink仿真中对内外故障、故障电阻和故障定位的影响、不同的系统配置以及负载变化条件进行了有效性测试。指出该方法可以很好地对内部故障和外部故障进行分类。所提出的保护方法的运行时间相对于现有方法要短。它还提高了上述异常情况下的选择性、安全性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protection Algorithm for Fault Identification and Isolation in DC Microgrid
In renewable energy dominated distributed ring configuration direct current (DC) networks, the protection philosophy is one of the critical challenging task. It is due to the existence of power electronic converters and erratic attributes of distributed energy sources. Consequently, conventional current direction based as well as over current protection strategies is not applicable for DC microgrids. In this paper, protection algorithm for fault recognition and isolation of faulty line is presented based on the polarity of change in inductance immediately after fault inception. The voltage and current sample information is used to determine the parameter by employing the least square estimation (LSE) technique. The efficiency of the proposed method is tested for internal and external faults, the impact of fault resistance and fault location, different system configurations, and load change conditions in MATLAB/Simulink simulation. It is noted that proposed method would categorize internal and external faults perfectly. The operating time of the proposed protection method is comparatively less than the existing methods. It also improves selectivity, security, and reliability under above mentioned abnormal cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Power Grid User Behavior Based on Data Mining Algorithms – System Design and Implementation Load Frequency Control Strategy of Interconnected Power System Based on Tube DMPC KWH Cost Analysis of Energy Storage Power Station Based on Changing Trend of Battery Cost Study on PV Power Prediction Based on VMD-IGWO-LSTM Research on Environmental Performance and Measurement of Smart City Power Supply Based on Non Radial Network DEA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1