无监督神经技术在MR脑图像分割中的应用

A. Ortiz, J. Górriz, J. Ramírez, D. Salas-González
{"title":"无监督神经技术在MR脑图像分割中的应用","authors":"A. Ortiz, J. Górriz, J. Ramírez, D. Salas-González","doi":"10.1155/2012/457590","DOIUrl":null,"url":null,"abstract":"The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI) segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer's disease (AD). Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM) as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR) outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the NuclearMedicine Service of the \"Virgen de las Nieves\" Hospital (Granada, Spain).","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"69 1","pages":"457590:1-457590:7"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Unsupervised Neural Techniques Applied to MR Brain Image Segmentation\",\"authors\":\"A. Ortiz, J. Górriz, J. Ramírez, D. Salas-González\",\"doi\":\"10.1155/2012/457590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI) segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer's disease (AD). Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM) as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR) outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the NuclearMedicine Service of the \\\"Virgen de las Nieves\\\" Hospital (Granada, Spain).\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"69 1\",\"pages\":\"457590:1-457590:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/457590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/457590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

脑图像分割的主要目的是将给定的脑图像分割成代表解剖结构的不同区域。磁共振图像(MRI)分割特别有趣,因为对白质、灰质和脑脊液的准确分割为识别许多脑部疾病(如痴呆、精神分裂症或阿尔茨海默病(AD))提供了一种方法。然后,图像分割产生了一个非常有趣的神经解剖分析工具。本文以自组织映射(SOM)算法为核心,提出了三种磁共振脑图像分割算法的替代方案。设计的程序不使用任何关于体素类分配的先验知识,并产生完全无监督的MRI分割方法,使自动发现不同的组织类成为可能。我们的算法已经使用来自互联网脑图像库(IBSR)的图像进行了测试,其性能优于现有方法,白质和灰质的平均重叠度量值为0.7,脑脊液的平均重叠度量值为0.45。此外,它还为“Virgen de las Nieves”医院(西班牙格拉纳达)核医学服务处提供的高分辨率MR图像提供了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Neural Techniques Applied to MR Brain Image Segmentation
The primary goal of brain image segmentation is to partition a given brain image into different regions representing anatomical structures. Magnetic resonance image (MRI) segmentation is especially interesting, since accurate segmentation in white matter, grey matter and cerebrospinal fluid provides a way to identify many brain disorders such as dementia, schizophrenia or Alzheimer's disease (AD). Then, image segmentation results in a very interesting tool for neuroanatomical analyses. In this paper we show three alternatives to MR brain image segmentation algorithms, with the Self-Organizing Map (SOM) as the core of the algorithms. The procedures devised do not use any a priori knowledge about voxel class assignment, and results in fully-unsupervised methods for MRI segmentation, making it possible to automatically discover different tissue classes. Our algorithm has been tested using the images from the Internet Brain Image Repository (IBSR) outperforming existing methods, providing values for the average overlap metric of 0.7 for the white and grey matter and 0.45 for the cerebrospinal fluid. Furthermore, it also provides good results for high-resolution MR images provided by the NuclearMedicine Service of the "Virgen de las Nieves" Hospital (Granada, Spain).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovery of MicroRNAs in Cardamom (Elettaria cardamomum Maton) under Drought Stress Anopheles gambiae: Metabolomic Profiles in Sugar-Fed, Blood-Fed, and Plasmodium falciparum-Infected Midgut Five-Coordinate Zinc(II) Complex: Synthesis, Characterization, Molecular Structure, and Antibacterial Activities of Bis-[(E)-2-hydroxy-N′- {1-(4-methoxyphenyl)ethylidene}benzohydrazido]dimethylsulfoxidezinc(II) Complex Effect of Glyphosate and Mancozeb on the Rhizobia Isolated from Nodules of Vicia faba L. and on Their N2-Fixation, North Showa, Amhara Regional State, Ethiopia Balancing African Elephant Conservation with Human Well-Being in Rombo Area, Tanzania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1