{"title":"有机光伏用n-环苝二亚胺非富勒烯受体","authors":"Mahmoud E. Farahat, G. Welch","doi":"10.3390/colorants2010011","DOIUrl":null,"url":null,"abstract":"This work covers the development of non-fullerene acceptors for use in organic photovoltaics built using the N-annulated perylene diimide dye. The classic perylene diimide dye has been extensively used to construct non-fullerene acceptors, leading to device power conversion efficiencies of over 10%. Strong visible light absorption and deep frontier molecular energy levels have made such materials (both molecular and polymeric) near ideal for pairing with narrow-gap conjugated polymers in bulk-heterojunction active layers. The N-annulation of the dye provides an extra site for side-chain engineering and alters the electronic structure of the polycyclic aromatic core. In addition, N-annulation allows for selective bromination of the perylene core, leading to building blocks that are useful for the construction of large molecular frameworks using the atom-economical direct heteroarylation cross-coupling method. Herein, we detail a series of molecules developed by our team that are based on the N-annulated perylene diimide in the form of dimers with different cores (both electron-rich and electron-deficient); dimers with varied side chains; tetramers with varying geometries; and large, asymmetric molecules with internal energy cascades. The use of these molecules as non-fullerene acceptors in organic photovoltaic devices (binary and ternary blends, outdoor and indoor light applications, and spin-coated vs. slot-die-coated photoactive layers) is presented.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics\",\"authors\":\"Mahmoud E. Farahat, G. Welch\",\"doi\":\"10.3390/colorants2010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work covers the development of non-fullerene acceptors for use in organic photovoltaics built using the N-annulated perylene diimide dye. The classic perylene diimide dye has been extensively used to construct non-fullerene acceptors, leading to device power conversion efficiencies of over 10%. Strong visible light absorption and deep frontier molecular energy levels have made such materials (both molecular and polymeric) near ideal for pairing with narrow-gap conjugated polymers in bulk-heterojunction active layers. The N-annulation of the dye provides an extra site for side-chain engineering and alters the electronic structure of the polycyclic aromatic core. In addition, N-annulation allows for selective bromination of the perylene core, leading to building blocks that are useful for the construction of large molecular frameworks using the atom-economical direct heteroarylation cross-coupling method. Herein, we detail a series of molecules developed by our team that are based on the N-annulated perylene diimide in the form of dimers with different cores (both electron-rich and electron-deficient); dimers with varied side chains; tetramers with varying geometries; and large, asymmetric molecules with internal energy cascades. The use of these molecules as non-fullerene acceptors in organic photovoltaic devices (binary and ternary blends, outdoor and indoor light applications, and spin-coated vs. slot-die-coated photoactive layers) is presented.\",\"PeriodicalId\":10539,\"journal\":{\"name\":\"Colorants\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colorants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/colorants2010011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colorants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/colorants2010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics
This work covers the development of non-fullerene acceptors for use in organic photovoltaics built using the N-annulated perylene diimide dye. The classic perylene diimide dye has been extensively used to construct non-fullerene acceptors, leading to device power conversion efficiencies of over 10%. Strong visible light absorption and deep frontier molecular energy levels have made such materials (both molecular and polymeric) near ideal for pairing with narrow-gap conjugated polymers in bulk-heterojunction active layers. The N-annulation of the dye provides an extra site for side-chain engineering and alters the electronic structure of the polycyclic aromatic core. In addition, N-annulation allows for selective bromination of the perylene core, leading to building blocks that are useful for the construction of large molecular frameworks using the atom-economical direct heteroarylation cross-coupling method. Herein, we detail a series of molecules developed by our team that are based on the N-annulated perylene diimide in the form of dimers with different cores (both electron-rich and electron-deficient); dimers with varied side chains; tetramers with varying geometries; and large, asymmetric molecules with internal energy cascades. The use of these molecules as non-fullerene acceptors in organic photovoltaic devices (binary and ternary blends, outdoor and indoor light applications, and spin-coated vs. slot-die-coated photoactive layers) is presented.