L Favaro, S Campanaro, J I I Fugaban, L Treu, E S Jung, L d'Ovidio, D P de Oliveira, M-T Liong, I V Ivanova, S D Todorov
{"title":"从人口腔分离的戊糖小球菌ST58有益特性的基因组学、代谢组学和功能特征","authors":"L Favaro, S Campanaro, J I I Fugaban, L Treu, E S Jung, L d'Ovidio, D P de Oliveira, M-T Liong, I V Ivanova, S D Todorov","doi":"10.3920/BM2022.0067","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of <i>Pediococcus pentosaceus</i> strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as <i>P. pentosaceus</i>, named ST58. Based on multiple isolation of the same strain (<i>P. pentosaceus</i> ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of <i>P. pentosaceus</i> ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of <i>Listeria monocytogenes, Enterococcus</i> spp. and some <i>Lactobacillus</i> spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against <i>L. monocytogenes</i> strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, <i>P. pentosaceus</i> ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":"14 1","pages":"57-72"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genomic, metabolomic, and functional characterisation of beneficial properties of <i>Pediococcus pentosaceus</i> ST58, isolated from human oral cavity.\",\"authors\":\"L Favaro, S Campanaro, J I I Fugaban, L Treu, E S Jung, L d'Ovidio, D P de Oliveira, M-T Liong, I V Ivanova, S D Todorov\",\"doi\":\"10.3920/BM2022.0067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of <i>Pediococcus pentosaceus</i> strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as <i>P. pentosaceus</i>, named ST58. Based on multiple isolation of the same strain (<i>P. pentosaceus</i> ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of <i>P. pentosaceus</i> ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of <i>Listeria monocytogenes, Enterococcus</i> spp. and some <i>Lactobacillus</i> spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against <i>L. monocytogenes</i> strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, <i>P. pentosaceus</i> ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\"14 1\",\"pages\":\"57-72\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3920/BM2022.0067\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3920/BM2022.0067","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Genomic, metabolomic, and functional characterisation of beneficial properties of Pediococcus pentosaceus ST58, isolated from human oral cavity.
Bacteriocins produced by lactic acid bacteria are proteinaceous antibacterial metabolites that normally exhibit bactericidal or bacteriostatic activity against genetically closely related bacteria. In this work, the bacteriocinogenic potential of Pediococcus pentosaceus strain ST58, isolated from oral cavity of a healthy volunteer was evaluated. To better understand the biological role of this strain, its technological and safety traits were deeply investigated through a combined approach considering physiological, metabolomic and genomic properties. Three out of 14 colonies generating inhibition zones were confirmed to be bacteriocin producers and, according to repPCR and RAPD-PCR, differentiation assays, and 16S rRNA sequencing it was confirmed to be replicates of the same strain, identified as P. pentosaceus, named ST58. Based on multiple isolation of the same strain (P. pentosaceus ST58) over the 26 weeks in screening process for the potential bacteriocinogenic strains from the oral cavity of the same volunteer, strain ST58 can be considered a persistent component of oral cavity microbiota. Genomic analysis of P. pentosaceus ST58 revealed the presence of operons encoding for bacteriocins pediocin PA-1 and penocin A. The produced bacteriocin(s) inhibited the growth of Listeria monocytogenes, Enterococcus spp. and some Lactobacillus spp. used to determine the activity spectrum. The highest levels of production (6400 AU/ml) were recorded against L. monocytogenes strains after 24 h of incubation and the antimicrobial activity was inhibited after treatment of the cell-free supernatants with proteolytic enzymes. Noteworthy, P. pentosaceus ST58 also presented antifungal activity and key metabolites potentially involved in these properties were identified. Overall, this strain can be of great biotechnological interest towards the development of effective bio-preservation cultures as well as potential health promoting microbes.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits